
•
DEVOTED ENTIRELY TO Tlt E CDS MAC 1802

Alin Cl"S

TilE TEXT "D ITnri by Stev e 'l ie, I
H-OlJIl--I CATl t)NS TO TrlF. CLUB VOU !WA,RIJ bv P. l!t Ji r 27
STATUS ;jJS~ LAY by P. uu i r- 3n
'd'lON ICS r n-v BAS IC FOR All 18 (12 SYST""S

bv H .~ . S tu ur m~ n 33
Ele II SERIAL I/U PACKAGE bynps Ste iner 31
i:tJRf)\(PROG~A"''1!'Jr, nI T :": AN I R0 2 by Ken ue n t e I 43

JUNE 1981

ISSUE 23

•
DFPIRT".': rrs

I '1H I Eve cu t i ve
puo l f she r s P::l<1e
coitnrin l Li s t i nn
ftovertisi nq Policy
Executi ve File
Hel~

Lette rs of Con t~ct

Er rata I PSO #20
t-o r- Sa l e o r Swe p
CL ub or oe r Form
Vote rn r Rest Art icA l
rembe r sh t p Fo r-m
MF! i 1 e r

~

2
3
J
J - 5
5
'i
5
~.y
. '1
4 ~

50

•
IPSO FACTO is p"bl ;shed by the ASSOCIATION OF COMPUTER EXPERIMENTERS
(A C.E.), a non profit, educa tional organil ation. Information in IPSO FACTO is
believed 10 be dcr.:W'-tte and reliable, However. no responsibility is assumed by IPSO
f Ae TO 0 1 the ASSOC IA TION OF COMPUTER EXPERIMENTERS for its use: nor
for , Il lY illf ,in<jl·rnt.:rlls 0 1 paten ts or other r ightsof th ird parties whi ch may result from
its IJ!:-p'.

2
ASSOCIATICfl lF COKPurEll EXPEll IMENTERS 1981 EXECurIVE

Program
President : Co-ordinator I •John Norris 416-2J9-8567 Jeff Davis A I f, -":.1.;: -1' -,,.J.,

Past President :
Training

Ken Bevis 416-277-2495 Co-ordinators:
Fred Feaver ..,!(- I\3 -/- ? 5I j

Secretary/Treasurer ; Ken Bevis

Mike Franklin 416-878-0740 Software
Co-Ordinator ;

Hardware Co-ordinator : Wayne Bowdish 416-J88-7116
Anthony Tekatch 416-957-7556

Editor :
Hardware Production Fred Pluthero 416-389-4070
and Sales :
Fred Pluthero 416-J89-407O EdItorial Staff ,

Publishing Committee: Sharon Swindells
Denn 1s HU don 416-J85-0798

John Hanson 416-6J7-1076 Consultant :
Bee Silcox 416-681 -2848

Membership Co-ordinator :
Bernie Murphy 416-845-16Jo Draughtsman:

Don MacKenzie 416 -676-9084 John Myszkowski 416-529-0250

ARTICLE SUBMISSICflS , •
We can a lways use l ot s of' s oftware and hardware r el at ed articles of all types .
Inasmuch as editing consists of taking the path of least resistance , ' camera
ready ' articles stand the best chance of getting in . Camera ready means
typed , single s paced , reasonably error free and done with a dark ribbon .
Diagrams should be l arg e and clear (we can reduce them) and clearly labelled .
Don 't l et camera r eady scare you off . If you don 't have access to a typewriter ,
by all means send in what you have , we st i l l wa nt to see wha t you ' ve been up to .

Some i mpor tant notes : Firs t , plea s e send us your original manuscr ipt . not
a photocopy . The qual ity of most ph ot oc op i es is invariably poor and ouch
articles get pushed t o t he back of t he editorial ' s t a ck'. Second , ~kp
sure your diagrams and programs are accurate . We have enough trouble with
errors on our part : t here 's no way we' ll ever catch yours .

MEMBEllSHIP RENEWALS :
This is a bit pointless : if you got this issue , you 're fully paid up . To help
you keep track , a not e designating the status of your subscript ion should
appear on the mailing lab el of your issue . This will most probably take
the form of •2 of 6 ' .

us MEMBEllS ,
Ve understand that a number of our US members are having trouble obtaining
Canadian currency . Don 't bother , send in your membership renewal (or order
for DeFacto , hint, hint) in US funds . This also applies to overseas members ,
if you can 't come up wi t h Canadian money easily enough. by all means send •
cheque or money order in US funds .

SEm) ALL A.C .E. CCRRESPCMlENCE TO, Bernie Hurp,y.
102 McCraney Street ,
Oakville , Chtario . L6H IH6
Canada.

3
EDITO~?IPL LISTING

• Congratulations to D. Shroyer for his ar t t ca I in IPSO FACTO ;?1
fULL BASIC FOR THE 1802 (REALLY!) I t was the best s r t Lc a l , For this
he receives a free membership in ACE for one year.

In IPSO fACTO 22 The best artical was A. FLOATING pontr MATH. PACKAGt.
by Wayne Bowcish, George Tom¢}ak, and Ron Verlaan.

!'ie are goino to run edve r t t semen t s in IPSO FACTO comme nc Ino with the
first fall issue. All issues for the next year will be mailed in the
first week of every other month. Commencing with October.

ADVEHTISING POLICY
-----~..........-.- "., .
Members may still advertise theIr personal equipment free.

•. .
Advertisments for mUltiple items of Software, Hardware, and

Components will be clased as commercial and will be charged the
commercial rate.

AlJVERTISING RATES

Our rates are based on our circulation and type of pUblication.

•
Tentative rates are as follows.

I full page
1/2 page
1/4 page

$100.00
$50.00
$25.00

•

Mini murn 0 f 1/4 pa qe •

All copy must be camer~ reacjy and .be accompaniec by a certified
cheque or money order. Ennyone requiring more information may contact
our Advertising Manaqer

FRED PLUTHERO
c/o Assec'n of Computer Experimenters
c/o Bernie Murphy
102 McCraney street
Oakville, Ontario
Canada L6H lH6

t: XECUT IVE f ILE

for our fORTH enthus iasts we are wor ki no ·on FORTH for the ACr: system.
~hen it is done And working we will suppiy it to thns~ who Are
interested for a print1:~q and mailing fee.

CLUB HARDWARE PRODUCTS

The club has had several requests recently to provide more information on the
ACE hardware projects.
The club has produced, and maintains in stock, 44 pin KLUGE (wire wrap) boards,
an 8k EPROM (2708) board, a VIDEO DISPLAY UNIT (6847) board and a buffered 12 slot
BACKPLANE conforming to the club's buss. The boards are6x9.5 inches, plated throuqh,
and reflowed. The boards are produced by a commercial circuit board manufacturer.
Please refer to the last page of the newsletter for prices and ordering information;
and to the last pages of IPSO FACTO issue 21 for the club standard buss.

4

~EW PRODUCT ANNOUNCEMENT ---- NETRONICS ELF II TO ACE BACKPLANE ADAPTER~

Now netronics ELFlf owners can use ACE boards with the new Netronics to ACE adapter.•

The NAB is designed to plug into the underside of the ELF II motherboard and provide:
6 ACE 44 pin buss slots

- 2 modified 86 pin slots
- 4DB 25 connector circuits
- Serial I/O with optional TTL or RS 232c drivers.
- System power buss distribution.
- pri ce $ '.00

The 7.5 x12 inch board is designed to plug into a 86 pin edge connector soldered
to the bottom of the existing edgeconAector at buss slot 4 or 5 on the ELFII.

The ELF II is elevated to a 45 degree angle{makes reading the HEX LEOS and using
~he HEX PAD easier} and the NAB plugs in behind, supporting the mother board and
ltS se~f: Club boards plug into the NAB and lay parallel to the motherboard.
The orlgl0nal blue metal case for the ELF II is retained, but the base is discarded
The new ELF II occupies a 12 inch sqaare area. .
The two 86 plnedge-c()nnecters·· areTdea1 for--personaYapp1icat ions, such as seri a1
interfaces,uarts etc{I use mine for a hardware interface to a Quest Super Expansion
board}. All Netronics signals are present, and one slot provides the signals on
both sides of the edgeconnector circuit to facilitate making homemade boards.

The serial/DB 25 connecter circuit is flexible enough to accommodate just about
any combination of peri feral I/O devices you may use. Both inverted and normal •
signal levels may be used, in combination if needed.

Boards are in stock ~

PROJECTS IN THE WORKS

Currently, ACE is working on three new boards for the club buss. Tony Hill is
redesigning the 2708 Eprom board to accommodate 2716 Eproms. The board will
provide 16k, in two 8k blocks, and will also have an EPROM BURNER to help you
keep your favourite programs. THE board will be available in the fall.

Nearly completed is the 8" Disk Controller Board Project. Actually, the board
works fine and is in stock, but because the DMA circuit of the ELF II and QUEST
ELF is dedicated to the HEXPAD, it will only work on the TEC 1802 at the present time.

Don't give up, the finest minds? in the club are working on an adapter for the
other micros. Look for an appropriate annoncement in the next issue of IPSO FACTO.

Finally, Don MacKenzie is ringing the final bugs out of a 32 k dynamic board.
This board will use 4116 dynamic' rams, and with. current prices, club users will
be able to add 32k of RAM to their systems for about $125.00.
Look for an announcement in the next issue of IPSO FACTO.

The club executive is considering projects for the next club year. One idea being •
considered is a new advanced 1802 board. Most of us use one of the commercial
'trainers', hexpad, leds etc. for I/O, and limited interface capability.

We would be interested in your comments and ideas. Please write to Bernie and let
us know if you would support a new board, what you want on it, what it should support.

•

•

Tied in to the hardware aspect of our commitment to the 1802, we are interested in
developing a club standard monitor. Most of the comments we have received on this
topic suggest we adopt Steve Nies version 2 of THE MONITOR. This proposal is
currently being evaluated by Wayne Bowdish. Please write to us and let us know
your ideas, and your support for this project. The club will consider selling
the club monitor on an appropriate medium if their is sufficient interest.

In order to facilitate the clubs expansion efforts in hardware and software next
year, a new position is being created in the executive - project coordinator.
With the clubs year coming to an end, the new executive will be elected in the next
few weeks. Again, write with 'y_o.u_r~lJggest_ions_for.new areas of activity.
JOHN WARE'S SOLUTION TO THE ELF IllS Short Memory. .-

M'E' Franklin, Milton Ont., June 1981.

I recently purchased a 16k 2114 static memory board from John Ware, 2257 6th Ave.,
Fort Worth Texas, 76110, phone 817-924-9506.
I am very pleased with the board, and recommend it to an ELF II owner interested
in adding static memory to his micro. John sells the bare board for $35.00, and
provides adequate documenta~ion to assemble it.
The board is well designed and laid out, and quite well made for a "home built"
product. The board's circuitry employs CMOS throughout, and has provision for
on board regulation if needed. It is the same size and pin out as Netronic's
boards, and like Netronics products, provides no buss buffers. Like most 16k
boards, it uses a 4 to 16 decoder to address one of four 16k memory blocks.

The board is a good and economical addition to my ELF ff. and I recommend it to
other club members. I suggest you call John first to make sure he has them in
stock, and to confi_~~_._t~e curren~J:>!,ice.

&1.£

5

Claudio Pugliese Li t uani a 5457 (1431) Buenos Aires ArqentiR

11st Ing.•

Claudio would like coppies of the following articals from Dr Dobbs
]ournal (I) Use a prom for a Character Generator

Vol. 2 No.5 p.17 May IY77 by David Allen
(2) A Practical Low Cost Home/School uP System
Yol.2 No.5 pgs.34-44 May 1977 by J. Weisbecker

(3) Utilities and Music on THe Cosmac Elf
No.19 Vol.2 IssueY p.30-33

(4) Programable IK RAM plUS 256 EPROM plus cassette
Recorder Vol.2 No.19 3&4 by Ed McCormick

Letters of Contact

Robert Passafiume, J650t MarlborOUgh, SanDiego ,
Cal. 92105.

Would like to contact members on the west coast
primarily So. Calif.

_. -----,.-
ERRATA" 'The Monitor .. Version 2' IP~() NO 20

\

There are four typographical errors In the
Change location L 98 from a 72 to a 73.
Change locations i A2 and 1 A3 from 3A 95 to 32 80
Change locations 1 A6 and! A7 from 3A 95 to 32 80
Change location 1 A9 from a 80 to a 95

QUEST SUPER ELF with s up- r hoard, N'''utronics key hoard, Model 40
Teletype, Power supply (Ouest). Askln~ $200.00
Dennis Battocchio 1305 Ontario St. Apt.<'S02 Burlinqton Onto Canada
Phone after 5:30P.M. (~16)637-55/3 L7S lYI

FOR SALE; Que$t SUPER ELF 1802 system in cabinet. 4K

expansion board, monitor & tiny BASIC ROM, power supply, rf

mod, ASCII keyboard, many tapes ,manuals and magazines

including Ipso Facto 1-18. All for only $3000_ _
Richard ~Aoffle 20121 Le.a-owell st.----#3 CanogA Park CA. 91306 U.S.A.
phone (213) 341-6098

FOR SALE. ELF II rev.C with Giant sa. interface, 3ea. 4K memory Bds.
(12K total RAM), .5amP power supply, FULL BASIC on cassette with
RPN Math Bd., aSCII keyboard and Video Display Bd., All in Netron1cs
cabinets. Full Documentation and Manuals for machine language and
FULL BASIO. Software on cassettes and many 1802 based newsletters.

Complete ELF II Computer System- asking $650 or best offer.
-- Kevin 1~F1st 30R JacksonAvp.. jJ(diance Ohio 43512 tJsa:~-·.

phone (41Y)i82-6147

)K Static RAM, compatible with TEC180Z. Coded for
OOOO-OBFF. Ceramic 2114's and all ie's on sockets.
Asking $90.00. Colin Nicholson, 19 Windermere Crt.,
BraJIpton. ontario, Canada. 16X 2L5

"08 IPROX boa~ tor the "ACE" bus ~s ad;;rtised-in
IPSO FACTO. Unused PCB "ith ... 2.f.-pin sockets ia.tal-leet
and includes S unused 2708 Eprom.. $2e U.S. .
'1'011 Joa•• , 409 springdale a.... , Enterprise, Alab_, aSlso

Fal SALE
1 Netronics 41: memory board
without 2102 RAM's. Includes
DIP switch addressing, fully
socketed. Asking $25 (U5) or
best offer. Send SASE tOI
David Schuler, 3032 Avon Road,
Bethlehem, Pa. 18017, USA.

SELL OR S,~AP

•

•

TEKTRON 1802 SYSTEM consisting of Tektron 1802 boare, Tektron MBI
3/4 K memory with 1 page of CMOS, "IH2 7K memory board, 33KSR
Teletype, Teletype UART interface bOArd, Keyboard, Keyboard and
cassette interface hoard (incomplete), ACE YOU-Memory board with
chips and soc~ets (not assembled), Yammond case wired with ~ 22 pin
sockets, Heat sinked requlated on case All tested and complete
except for Video board and keyboard interface Asking $400.00 or
will consider HI-FI components. Mikp. Pupeza 644 Bathurst St. •
Toronto ontario Canada M5S 2RI phone (416)535-4127

•

•

7
Steve Nles
2510 Deas Street
Bossler City, LA 71111

The Text Editor

After finishing work on my last major project, 'The Monitor',
I realized after hand codIng the entire 2K program how nice It
would be to have an assembler. However, before I could use an
assembler, I had to have some way of editing the source text.
After using IBM's full screen editor last summer, I decided to
Include this feature In my editor. The major advantage of this
method Is that line numbers are not needed. Instead, the entire
screen Is filled with a page of text. If you need to correct a
word, all you have to do Is move the cursor over the word In error
and type In the corrections. The source text and the screen are
updated at the same time. '

A second advantage of this editor Is that any terminal can be
used. Even though the length of a line Is 80 characters, the screen
can be formatted to appear as small as 3 lines of 1 character or
as large as 24 lines of 80 characters. If the horizontal width of
the screen Is less than 80 characters (mine Is 32, using the 568047),
the entire screen will scroll right or left to allow the user to
edit the entire line. I'll mention more about this feature later on
In the article.

An example of the screen format Is shown In figure 1. Notice
that the example Is of a 32 character display. The first line of
the display Is used to enter commands to the editor. Following
the command line Is what I call a scale line. Besides separating
the command rlne fr.om the source area, a function of the scale

EDIT
seale line -> ---------1---------2---------3-

THIS IS AN EXAMPLE OF THE TEXT

THIS IS A '2 CHARACTER SCREEN.

HI THEREI
Scale line -> ---------1---------2---------3-

<- Command line

Source area

•
Figure 1

line Is to Indicate which column the cursor Is In. The columns are
labeled by tens, so only the tens digit Is Indl~ated. The units
digit Is Indicated by counting the number of hyphensslnc. the
last number. The area between the seale lines Is the source area.

8

It is in this area that text is entered and corrected. This
area will expand and contract depending on the amount of text
entered. The last line .Is another scale line to delimit the
display of the source area from the rest of the screen.

There are basically two ways to use the editor. The first
is by loading the editor Into RAM and then establishing a
temporary command to call It. This Is done by using the
memory examine command to change the end-of-table vector In
SYSTEM RAM to point to location ~ 00 of the editor. The second
way Is the method I prefer. All that is required is to place
the editor In ROM and then locate the editor ROM directly
behind the monitor ROM. This method does not require changing
any vectors at all.

There are several options for calling the editor. These
options are summarized In Table 1. At this point it might be
helpful to discuss some facts about the editor.

•

COMMAND

TEXT~
IN IT? Y 1000 ~

TEXT.}
INIT? Y~

TEXT .l-
INIT? N looal

TEXT).
INIT? N~

DESCRiPTION

This sequence will Inl tllize the text
area as well as the terminal's para­
meters to the default values. The
amount of memory assigned to the text
area has been specified at 1000 (HEX)
bytes.

Same as above except .that since the.
end of memOry was not entered, the
editor will perform a non-destructive
search to find the physical end of RAM.
All of the available RAM is then
assigned to the text area.

This sequence Is used to allow the
text area and terminal parameters
already established by an earlier
editing session to still be In effect.
Essentially this command is a warm
start. Notice that the end-of-memory
parameter has been changed to 1000
bytes (HEX).

Same as above except that the editor
will assign all of the available
memory to the text area.

Table 1

Fi·rst, the editor assumes that the text starts at location 0000
and works its way up Into higher memory. It Is possibLe to set the
maximum amount of memory you would like to use as text. This feature
can be used to stop text from writing over any programs that are •
higher up In memory. If you don't enter In the maximum amount of
memory to be used, the editor will do a non-destructive search to
determine the physical end of memory. All of the available RAM will

•
COMMAND

TEXT 'f i 1e name' 1000 J

TEXT 'file'name' ~

9

DESCRIPTION

This command will call the text
editor and then load the desired
file Into the text area. This file
must be an ASCII file ONLYI The
end of the text area has been spe­
~Ifled to be at location 1000 (HEX).
The terminal 's parameters are also
initlliled to their default values.
This command will perform similiar
to a cold start.

Same as above except that all of the
available memory has been assigned to
the text area.

•

•

Table 1 (continued>

then be used as the text area.
Second, if you tell the editor to Initllize the text area, it

will insert 13 CRs followed by a 00 byte to signal the end of the
file. Before a line is edited, it is expanded (excess blanks are
inserted on the right) until the record length Is 80 characters.
After the line Is edited, all excess blanks on the right are removed.
This allows a line to be stored In RAM with greater efficiency •
This process of expanding and contracting a line is invisible to the
user. After the text area is inltilized, the termInal's parameters
are stored in SYSTEM RAM. The defaut terml~al size Is 16 lines of
32 characters. These values are recofded at locations 9 4B and ~ 4C.
If y6ur terminal 1s a dIfferent size; place the screen s horizontal
sIze in HEX minys 1 at location A48. Sfm11iarly, place the screen's
vertical size in HEX mlnys 3at locatlon~ 4C. If you don't use the
correct values for your partiCUlar t"rmlnal, the display will do all
sorts of strange things.

Finally, the editor haS a feature that could use a bit of
explanation. I will be using the editor for some word processing
applications, so I need to know when I am coming to the end of a
physical piece of paper. WIth this thouaht in mind, I developed a
feature that would print a line of dots across the screen when you
are approaching the end of a phy~lcal page. This way, when you are
printing a file and the printer hits this line, a form feed will be
generated. The printer will then continue printing as normal.
(The line of dots will not be printed.) The editor will default to
60 lines of text per page. If you wo~ldllke to change this value,
change the byte at location A 4A to the desired default value.

The page dividIng line will not affect operation of the editor
in any way. If you need to move the cursor from one physical page
to the next physical page, the cursor will simply hop over the
page divIding line. This feature tends to complIcate the editor
program someWhat, but I feel that the advantages outweigh the extra
code required •

The rest of this article will Hst the commands assoc.lated
with the editor along with a short explanation on each.

•
,10

1) EDIT;).
This command Is probably the most used command In the

entire editor. Its function Is to allow the user to enter
and correct text. Basically, there are two modes that the
editor can be In when using this convnand. These modes are
called the normal and get_parm modes. The normal mode Is
when the user wants to enter or correct text. The editor Is
in this mode most of the time. The get_parm mode Is used when
you need to get parameters for some of the commands (Ie. From
and To addresses for the SAVE command). This mode Is Indicated
by changing the hyphens of the scale line to colons. In this
mode, all you can do Is move the cursor around. Any command
or subcommand that modifies text Is deactivated. After the
command obtains the necessary parameters, the screen will
revert back to the normal mode. 1111 describe more about the
get_parm mode later on In the article.

The edit command has several sUbcommands. These subcommands
are all generated by using the keyboardls control characters.
In cases where the keyboard has a special key devoted to a
control character, I will call that character by name. All other
control characters will be denoted by a bar over an ASCii letter.
This wIll Indicate that you need to press the control key and
the letter to generate the subcommand.

Each of the ED IT subcommands wIII be 1Is ted along with a
short explanation on each. But first I would like to mention
some notation I will be using In th~ descrlpt~ons.

Flrs~, If the controlchar~~t.~has arrows around It (for
example <S», this means that this Particular subcommand Is
deactivated while In the get_parm mO'de.Second, If a control
character Is underllned, this means that the bell will be rung
If either you use th Is subcommand at' the end of a 11 ne or If
the "record Is full. In listing the subcommands, I will first
11st the name, then the hex represetttat Ion, and then the key
that should be pressed. The explanation will then follow. Now
that the notation Is discussed, on to the sUbcommands!

A) Cursor rlght,09,HT (or TAB)
B) Cursor left,OA,Backspace
C) Cursor up,OS,U
D) Cursor down,OA,Llne feed

These four sUbcommands are fairlY self-explanatory.
However, one thln~ should be mentIoned at this point. For
the text editor to work properly, the terminal must be
capable of supporting the following cursor movements:
CR,LF,BS,TAB (one horizontal space),VT (slmillar to a reverse
LF), and HOME. For those of you that are using the video
driver contained In The Monitor, the editor will automatically
add the remaining functions (VT and HOME) to the driver.

E) CRLF,OD,CR
This command will move the cursor to the start of the

next line. If the cursor Is at the end of the text file,
the file will be expanded by 13 blank lines. This expansion
will also occur for the cursor down subcommand. If the
available text area Is full, the bell will ring'. '

•

•

•

•

•

11

F) Escape edlt,Ol,Q
This subcommand Is used to exit the edit routine and

to move the ,cursor up to the command line.

-G) Set screen,13,S
This Is used to move the cursor to any column on the

screen that Is a multiple of ten. After pressing S, the
editor will walt for a number between 1 and 8 to be
entered. After this number Is entered, the cursor will
move to the desired column. Enter!ng anything besides 1
through 8 will cause the cursor to be moved to column 1
of the same line.

H) Save parameter,lO,p
This subcommand Is used in the get_parm mode. It's

purpose Is to IndI,cate which 1Ine shou 1dbe used as a pa ram­
eter. For example, after entering SAVE, the command wIll
be expecting both a FROM and TO address. Therefore, the
editor will enter the get_parm mode. The cursor Is then
moved to the line that Is' to be used as the starting address.
The P keY Is then pressed to send ,the address of th i s 11ne '
to the save command. The same proc'edure Is used to get the
TO address. .

Even though this key was meant to be used in the
get_parm mode, It Is' still active In the normal mode.
Pressing this key In the normal ~ode will take you back to
the monitor (without clearing the sQreen). Even though you can
do this, It Is not a recommend_d procedure.

I) Delete llne,OB,<K>
This sUbcommand will delete the line where the cursor

is located from memory.

J) Insert line,OC~(r>
This is used to tnsett a line Where the cursor is

located. The lines below the c4rsor are moved down to make
room for the new line.

K) Delete character,04,m
Pressing this key will remove the character under the

cursor from the line. The remAinder of the line will move to
the left to fill up the resultlha hole.

L) Insert character,03,<C>
Th Is subcommand will move .t ha 1i ne one pos It ion to the

right and insert a blank where the cursor Is located.

M) Erase till the end of llne,OS,~
Used to erase the line starting from where the cursor Is

located until the end of the line.

12

2) QU I T to
This command will transfer execution from the editor

back to the monitor.

By the way, I forgot to mention that commands may be
abbreviated. Look at the Comm-table In the editor to determine
the minimum abbreviation.

3) PB ~ 0 r PB dig I t ~
Ifad Ig I t was not entered a 1on'g with the command, the

displaY will move back one paae. If a dtglt was entered, the
display will move back that numbe ro,f pages. If the d Isp 1BY
Is at the start of the file, this command will have no effect.

4) PF~ or PF dlglt~
This command Is slmillar to the PB command except that the

display mOVeS forward. If the display Is at the end of the file,
this command will have no effect.

•

5) TOP~

Moves the display to the start of the file.

6) BOTTOM ~
Moves the dIsplay to the last page In the file.

7) SAVE~
This command wIll save a text file on cassette. After entering

this command, the screen will go Into the get_parm mode. This •
Indicates that the SAVE routine expects a FROM parameter. If· you
wish to exit the ~et_parm mode at an~ time, move the eursor to
the command 11 nee By us IngEscape e'dl t) and then type QU IT.1. •

. In order to get the FROM address, mOVe the .c,ursor to the
first line that you wish to Save arid then press P. Similtarly, to
obtain the TO address, mo!.e the cursor to. the last line that you
wish to record and press P. The editor will then clear the screen
and print "ENTER FILE NAME _)". Enter the desIred file name along
with a CR. After the save routine has ((nlshed recording the file,
It will do a fIxed delay tn order fot the operator to read any
messages. The display will then return to the normal mode displaying
the start of the file.

8) LOAD.).
This command will only work In the normal mode. Its purpose

Is to load a text file from tape and concatenate It to an existing
file. If desired, the existing file maY simply consist of a
single blank line. After entering this command, the editor will
prompt you for the file name and then proceed to load the file.
After loading Is complete, a fixed delay will occur to allow the
operator to read any messages. The screen will then displaY the
start of the file In normal mode.

•

•

•

•

13
9) VERIFY~

After using the SAVE command, this command should be used
to guarantee that the file Was transferred to the cassette
properly. If It wasn't, a message will be printed Indicating
where the error occurred. After a fixed delay occurs to allow the
operator to read any messages, the screen will then be cleared
and the first page of the text will be'dlsplayed.

10) PR INT.l. or PR INT address \.
Th Is command will print the des Ired sect ion of tex t on an

output device. After entering this command, the screen will go
into the Get_parm mode to Indicate that It expects both FROM and
TO addresses. To enter thes~ addresses~ simply move the cursor
to the desired line and press cnt1P' (P). The editor will then
print the text starting with the FROM line ending at the TO line.

Anoth'er feature of th I5 command Is that you can spec Ify the
output device desired. Entering PRINT~ without an address will
select the default value specified at location 1 05 (usually
set to a printer). To specify a different output device, enter
the starting address of It's software driver routine.

At this point I would like to point out one fact concerning
the PRINT command. When the text being printed reaches the end
of a record, only a Carralae Return 1s printed. This Is because
my printer (a Selectric) will perforM both a CR and a Line Feed
upon occurrance of the CR character. If your printer requires
use of the LF chara6ter, sImply cal" a little routine that tests
for a CR While passing all other characters. If a CR Is found,
then output both a CR and a LF.

After the text Is printed, the output vector that was In
effect before this command was used ts restored back Into SYSTEM RAM.

11) FINO Itext stringl ~
. The purpose of this command Is to locate an occurrance of a

string In the text area. If a match Is found, the screen Is
adjusted so that the matched line 15 the fIrst line on the screen.
If a match was not found, the editor will print 'NOT'FOUND'.

Another feature of thls'command Is the availability of a
wild card character. Using the character '1' in the text string
will allow this position to match with any character. For example,
If we type FIND II L1?E THE 18021 and had two lineS in the text
area that were I LIKE THE 1802 and I LOVE THE 1802, both lines would
match. This little feature has come In handy several tlmesl

One fact concerning this command Is that the search starts
from the second line shown on the screen until the end of the file.
If you would like to search the entire file, you must move the
screen to the start of the file. This feature will allow a user
to selectively search part of the file for a text string.

12) MOVE ~
If It Is needed to move a block of text from one location

to a new Ioca t Ion, the user can use the MOVE c'ommand to accomp1ish
this. After MOVE~ Is entered, the screen will go Into the Get_parm
mode to get the FROM, TO, and NEW LOCATION addresses. If the NEW
LOCATION address Is between the FROM and TO addresses, the bell will
be rung. After the block of text Is ~oved to It's new location,
the screen will display the first pa.e of the text area.

14

13) COpy ~
SimI liar to the MOVE command except that a copy of the

block Is moved to the new location. lhe block Itself Is not
moved. This command will not work In the Get_parm mode.

14) CHANGE /text strlngl/text strlng2/ ~
This command will change every occur ranee of the first

string Into the second string. The two strings can be of any
length, not necessarily the same length. OnlY those lines past
the second line shown on the scteen until the end of the fl1e
are checked for a posslbleoccurrance. I·f the string was not
found, the editor will print 'NOT FOUND'. Notice that this
command Is deactivated In the Get_parm mode.

This about covers the description of the text editor·.
For those people who would lIke to know more about the "Innards"
of the editor, I have Included a table of useful Information
at the end of this article. At this point I would like to mention
that While the editor has been tested to make sure It will work,
all possible combInations of commands and subcommands have not
been verified. If any problems ar l se , I would appreciate It If
If you would send me a postcard explaIning what happened and what
you were doing at the time. I will then try to 'Iaure out why
the problem happened and will take steps to fix· It. '

- - - - - - - - ~ - - - -- - - -- - - - - ~ - - - - - - -

•

I am starting a file system of people who are using any of •
the software I've submitted to IPSO FACTO. I would appreciate
It If anyone who uses this software would send me a postcard
Indicating what software you are using. Also please briefly
describe your system (amount of RAM and ROM, type of terminal, etc.)
and Indicate any needs for the future. t need this information
this Information to help me In desig~lng programs for 1802 users.
Currently I am In the process of writing an Interactive assembler
for the lS02. This assembler will have the capability of using
a linker/loader to generate relocatable object files. Future plans
include a compiler to translate TRS-SO level 2 Basic Into 1802
machine language and a Robotic Control Language compiler. I will
need Information about the systems of Individual users to aid
me In t~llorlng the software to fit the users needs. Plea$e address
the postcards or letters to the address glve~ at the start of this
article. .

- - - - - . ~ -- - -- - - - -- - - ~ - - . - - - - - - - - - -
P.S. One fact that I neglected to mention concerns users with
video displays of less than 80 characters per line. As text Is

entered at the edge of the displaY, the screen will scroll to the
left. However, It Is possible for text to be entered faster than
the screen will scroll. There are two options available at this
point. Either type slower than the sc"reen will scroll (not very
practical), or use the Set~$creen subcommand to move the right •
side of the screen all the way over to the left. Text can then
be entered normally.

15

EDITOR FACT SHEET

• R(X>.l I R(XLO
R(O) - Not Used
R(I) - Temporary
R 2) - Stack
R(3) - PC
R(4) - Ca 11
R(S) - Return
R(6) - Return Addr.
R(]) - TempOrary
R(8) - Screen Home ptr.
R(9) - Input Buffer
R(A) - Memory Access Subr.
R(B) - Temporary
R(C) - Temporary
R(D) - Text position ptr.
R(E) - Line Ctr. I Screeh POSe
R(F) - Saved accum. I Scroll Ctr.

SYSTEM RAM USAGE

Byte Function
10 f - Save parameter
13 i-Set screen
01 Q - Escape EDIT
oa as - Cursor <--
OA .L,F - CU rsor J,
OS U - Cursor t
00 CR - CRLF
Qi HT - Cursor -->
OB (K) - Delete line
OC (i) - Insert line
~ (Q) - Delete character
03 (~) - Insert character
Qi (E) - Erase till end of line

20-.ZE () - Text characters
Ctr.

Note: Cntl chars. with paren­
thesis around them Indicate
deactivated In 'Oet-panm.mode.

Cntl chars. that are underlined
wi 11 ring the bell If at the
end of the line

•

I Palte Screen Screen I I I Screen
End memory size hor. vert. Extended Output type

I size size I I I

20 -- 22 .. 24 -- 26 --- 28 ------------------- 32 ------ store
21 ~- 23-- 2S -- 27 --- 29 --------------------33 ------ fetch

MEMORY ACCESS ADDRESSES

16

~ 00 54 45 00 ~ 08
05 01 I 00

/* COMM_TABLE EXTENSION */

•

•
loco ~ 90

Inlt Mem Access subroutine PC
Store end~of-memory address at
Inlt Type~of_screen flag
Inlt text editor parameters
Call Flx_FF
Call Display_screen
Print a HOM character
Ca 11 Buff_I nit
Call Mon.lnbuff
Call Mon.Comm_rec

Call Mon.Ram-lnlt
Inlt video terminal parameters
Try to get a end-of-memory parameter
Parameter was not specified, so find

the end of memory with a non­
destructive test

/* MAIN */
Inlt Output extension vector
Call Mon.Quote_search
If found quote, load the desired file
Call Mon.Load
Insert an end-of-flle mark In the text
Print "INIT? II

Inlt the buffer pointer
Call Mon.lnbuff
Test to see If the first char. Is a 'Y'
Yes, so tnlt the text area with CRs

59 3A 4E
F8 00 SO
3F

08 04 1 E8 ~ 6B r DB 68
10 04 H 78 3B 20
15 B1 BO AD
18 04 li 99
1B F8 00 50 30 4S
20 04 1 00 49 4E 49 54 3F AO
29 F8 00 A9
2C 04.!11. 05
2F F8 00 A9 09 FB
37 BO F8 00 AD 52
3F 20 02 50 80 3A
45 04 1 E8 S 92
4A 3B 1F 00 68
4E 04 ~ AO 33 65
53 F8 FF BC AC
57 C8 02 5C
SA 1C OC 52
SO F8 AA 5C OC FB AA 32 58
65 93 BA F8 93 AA
6A 9C OA 20 8C OA 22
70 F8 00 OA 32
74 B8 A8 BO AD BE AE AF
7B 04 Y. 19
7E 04!.l EE
81 04 1 DO 84
85 04!.l AO
88 04.!11. OS
8B 04.!11. 2E !.l AB
90 30 81

/* MEM ACCESS */
92 03
93 52 43 F6 F9 80 A9
99 02 CF 59 38 09 30 92

Save accumulator and get Index
Either save or load 0 reg., depending OF

/* BUFF_INIT */
AO F8 40 A9 Inlt ptr to end of buffer
A3 29 F8 20 59 89 3A A3 Insert blanks Into buffer
AA OS

•

E8 04 1 DO 00 8A
ED 05

•

•

•

~ AB
AF
BoS
B8
BO
C1
C5
C9
CO
01
06
OA
OF
E3

EE
F3
F6
F9
FO

.Ii 00
02
05
08
OC
10
17
1A
IE
21
26
2A
20
2E
30
33
36
3B
3F
43
40
48
48
4F

45 00 .B. A9
51 00 .y. 09
50 42 00 .\i 48
50 46 00 H 5B
54 00 H 92
42 00 H 99
53 00 \~ A3
4C 00 li B2
56 00 W C9
50 52 00 H Fo
46 00 X 02
43 4F 00 X EA
40 00 X FO
43 48 00 :t.. 87

04 1 DO OC 8A
04 .Ii 5F
04 jl E8
98 B7 88 A7
OA 29 AC
8F BC
DA 27 AB
47 32 33
FB 00 32 2A
FB 01 32 17
FB OC 04 .Ii 52
04 .Q. E8
2C 8C 32 2E
DA 27 AB
F8 2E 04 .§. 67
2B 8B 3A 21
04 jl E8
2C
9C AF
8C 3A 00
04 .R 5F
04 1 DO 04 8A
9E AC 38 2C
04 1 DO 8A
8C 3A 3E
8E AC
8C 3255
04 1 DO 89
2C 30 48

17
/* COMM_TABLE */

(Edit) Protected
(Quit)
(Pb)
(Pf)
(Top)
(Bottom)
(Save)
(load) Protected
(Verify)'
(Print)
(Find)
(COpy) Protected
(Move)
(Change) Protected

/* CRLF */
Print a CRLF

/* DISPLAY_SCREEN */
Print a FF and a LF
Call Scale_line
Ca11 CRLF
Put the screen home address In R(7)
Get the terminal vertical size
Save the Scroll ctr reg. In R(C)
Get the terminal's horizontal size
Get a character to be displayed
Test for the end of a record (CR)
Test for the end of a record (IF)

30 05 Char. was not a control char., print It
Call CRLF
Finished prlntlnf screen?
Get the terminal s horizontal size
Print the screen dividing line
Continue until one whole line Is printed
Call CRLF
Decrement vertical size counter
Restore Scroll counter
Finished printing screen?
Yes, so call Scale_line
Print a Home and a LF
Move the cursor down until the temp.

line ctr equals zero

Move the cursor to the right until the
temp screen position ctr equals
zero

18

.B. 52
56
59

8F CE 2F 05
8B 32 55
2B 9F 04 ~ 67 05

/* SCREEN_PRINT */
Skip print If temp.scroll not ~ 0
Skip print If past screen end
Otherwise, print the character •

SF F8 30 BB
62 8F BC
64 OA 27 AB
67 F8 OA AC
6A 2C SC 32 7F
6E oA 33 32 75
72 F8 3A C8 F8 20
77 04 &52 3A 6A
7C 9C AF 05
7F 9B FC 01 BB
83 04 & 52 3A 67
88 30 7C

8A 20
8B 00 32 94
8E FB 00 32 94
92 FB 01 05

/* SCALE_LINE */
Init column Indicator to ASCII zero
Save contents of scroll counter
Get terminal's horizontal width
Inlt column's digit counter
See If a digit or a hyphen Is printed
Select either a hyphen or colon

Call Screen_print
Restore scroll ctr and return
Add one to the column tens digit
Call Screen_print

/* TEST_EOF */
. Decrement text pointer
Test for an end-of-flle byte

or a CR
or a FF

/* START_OF_RECORO */
95 80 3A 9B 90 32 A1 Exit If at location 0000
9B 04'.B. SA 3A 95 Ca 11 Tes t_eof
AO 10 05 •
A2 10
A3 04 & $B 3A A2
A8 05

/* ENO_OF_RECORO */
Increment text pointer
Call Test_eof

A9 98 BO 88 AD
AD 04 I 96 38 1F 38 2F
B4 04 ~ EE 30 BO
B9 10
BA 04 1 AS
BO 04 ~ 64 3B BO

C2 FB 11 3A CO
C6 BE AE AF
C9 04.Y. 41
CC 05

CD FB 19 3A E6
01 80 3A 07 90 32 BA
07 04 E SA 32 B9
DC 8 E 32 B3
OF 2E
EO 04 1 DO 88 30 BO

/* EDIT */
Set the text ptr to, screen's home addr
Call Extend
Call Display_screen

Call Mon.Bell
Get a character from the keyboard

/* ESC EDIT */
Test for a Q
Inlt Screen position ctr, scroll ctr,

and Line ctr. Then call Compact

/* CURSOR ~ */
Test for a Backspace character
Ring bell if at location 0000
Call Test_eof
If Screen pOSe ptr. • 0, dec. SCrOll.
Decrement Screen position counter .
Move the cursor to the left

19

FE FB 03 3A 08
I 02 O~ Y 66 CO & BD

•
.& E6

EA
EF
FO
F3
F7

FB 01 3A FE
04 .a 8B 32 BA
10
OA 27 52
8E F7 33 81
IE 04 1 DO 89

1* CURSOR -4 *1
Test for a Tab character
Call Test__eof
Increment text position ptr
Get the terminal's horizontal width
Inc. Scroll ctr. If past the edge

30 SO Increment cursor position

1* CURSOR l *1
Test for a Line feed character
Call Cursor_down

Call End_of_record
Test to see If we are at top of page
No, so decrement line counter
Print a Vertical Tab
Do we need to skip over a dotted line?
Call Compact
No, so restore text position ptr
Ca 11 Mon. Be 11
We need to move the display back a

page, so move the cursor to the
tast line of the preceedl~& page

1* SCREEN_UP *1
Save the text position pointer
Get the screen's home address
Get the termlnat's vertical size

57 80 73 90 73
5B 98 BO 88 AD
SF DA 2Y A7
62 80 3A 68 90 32 88
68 20 04 .B. 95
6C 20 40 FB OC 3A 76
72 27 87 32 7A
76 27 87 3A 62
7A 2C 8C 3A SF
7E 90 B8 80 A8
82 04.Q. EE
85 12 42 BO 02 AD OS
88 OA 29 52 87 FS
90 CE FF 01 BE 30 7E

I * CURSOR t *1
Test for a U
Save the text position pointer
Call Start_of_record
Ring bell If at location 0000
Call Extend
Determine address of next line up

•

08
OC
10
13
19
IE
25
29
2C
2F
32
36
3B
3E
45
4A
40
52

FB IF 3A FE
80 73 90 73
04 II 95
80 3A 19 90 32 45
20 D4 T 96 27
12 12 i7 FO 50 F5' 73
02 7F 00 73
04 .B. A3
9 E 32 4A
FF 01 BE
04 ! DO 8B
40 FB OC 32 2C
04 Y 41
12 42 BO 02 AD 30 05
04 ! A8 30 3E
ID AC lC
OA 29 FF 01 BE
04 I 57 30 3B

Call Start_of_record
Do we need to skip over a dotted line?
Yes, so decrement the temp. line ctr.
Oec~ement the lin~ counter
Finished moving up pages?
Update the screen home address
Call Display_screen'
Restore the text position pointer
Calculate line ctr value for less

than one page moves

•
96 80 73 90 73
9A 04.B. Y5
90 F8 00 A7 C8 10 17
A3 D4 B 8B 3A Al
A8 87 FO 50 A7
AC F8 20 04 T B3
81 30 85 -

1* EXTEND *1
Save the text. position pointer
Call Start_of_record
Count the number of characters for

this line
CalCUlate the number of blanks needed
Ca 11 Move_11 ne

20

/* MOVE_LINE */
I B3 80 73 AC 90 73 BC Save the text position pointer

89 4C 3A 89 2C Find the end of the file •BD 9C BB 8C AB
C1 87 52 8C F4 AC 9C 7C 00 BC Add amount of extension to end of f 11 e
CA F8 91 A9 E9 Set up a ptr to the end of memory 11 ml t
CE BC F7 29 9C 77 3B OA See If exceeded memory limit
05 04 1 A8 30 85 Yes, so rIng the bell
OA E2 Restore X ptr
DB 00 52 F8 00 50 OB Insert a marker to Indicate end of move
E1 2B 5C 2C OB 3A El Extend file
E7 02 C8 2C 9F 5C Restore byte where marker was Inserted
EC 8C 52 80 F7 9C 52 90 77 Fill the resulting hole wIth the filler
F4 3B E9 character contained In R(F).1
F6 9F FO IF 3B 85 Was the filler char. a CR?
FB CO JJ. 10 Yes, so jump to Flx_FF

FE
JJ. 02

03
06
09
OC
13

FB 18 3A E3
AE
04 .B. 95
04 .y. 66
8F 3A 13
04 1 00 80 CO .B. SO
F8 00 AF CO .R B4

/* CRLF */
Test for a CR
Yes, so zero screen position counter

, Call Start_of_record
Call Cursor_down
Is the scroll count~r equal to zero?
Yes, so print a CR I

No, so zero It and jump to Display_screen

COMPACT -/
Save the text position pointer
Call End_of_record

Inltllizea temporary counter
Count the number of excess blanks

that we can remove from the line
Compress the line
Go restore the text position pointer

/* FIX_FF */
Save the text position poInter •
Set up a ptr to the start of file -
Get the lines per physical page limit
Inlt a ctr that counts the no. of CRs

Call End_of_record
Get the end-of-record character
If the number of CRs 'Is below the

ltmlt, ~tore a CR
Otherwise, store a Form Feed

19 80 73 90 73
10 F8 FF BO AD
21 OA 25 52
24 F8 01 A7
27 10
28 22 04 .R A3 12
20 00 FC 00 32 63
32 87 F3 32 3C
36 17 F8 00 50 30 27
3C F8 OC 50 30 24

/*
41 80 73 90 73
45 04.RA3
48 90 BB 80 AB
4C F8 00 A7 38 17
51 80 3A 57 90 32 5E
57 20 00 FB 20 32 50 10
5E 4B 50 10 3A 5E
63 CO T 85

•

21

Call Start_of_record
Get the terminal's vertical size
Do we need to hop over a dotted line?
Yes, so Increment line counter
Print a LF
Increment the line counter
Print a LF
If we extended the file, go display

the screen. Otherwise, go display
a new page.

/* QUIT */
Cleat the screen
Modify the return address to Jump to

the monl tor

/* CURSOR_DOWN */
Save the text position pointer
Call End_of_record
Are we at the end of the file?
Yes, so get the terminal's vertical size
Set up a new record
Call Move_line to store another page
We exceeded memory, so restore file
Set.a flag to show that we added to file
Call Extend
Calculate address of the last current

11 ne
Call Compact
Get address of the new current line

50 2D

80 73 90 73
04 .!l A3
10 00 3A 8A
oA 29 A7
F8 00 50 10 Fa 00
00 04 I B3 3B 88
F8 00 50 CO 1 os
F8 00 B7
04 I 96 33 85
12 12 02 AD FC 51 73
02 BD 7C 00 73
04 !! 41
12 12 87 FS 73 AD
02 7F 00 73 BD
04 R 95 20
OA 29 52
40 FB OC 3A C3
9E FC 01 BE F7 33 04
22 04 1 DO 8A 12
9E FC 01 BE F7 33 D4
04 ! DO 8A
97 C2 I 82 30 63
F8 00 CO I 93

Y. 66
6A
60
71
74
7C
82
88
8B
90
97
9C
9F
A5
AA
AE
B1
B6
BO
C3
CA
CE
04

09 04 1 DO 8e
DO 12 42 A6 02 B6 05•

•

E3 FB 10 3A Fl
E7 04.!l 95
EA 04.R C6
ED FC 00 30 DO

/* SAVE_PARM */ _
Test for a P
Call Start_of_record
Call Esc_edit

27 OA 33 CA a BA

/* SET_SCREEN */
Test for a S
Zero screen position ctr and scroll ctr
Call Start_of_record
Get the column number from keyboard
Is the number between 0 and 9?

•

F1
F6
F8
FB

':I. 00
04
08
OE
11
18
18
lC
20
24

FB 03 CA ':I. 27
AE AF
04 .B 95
04 ~ 64 38 FB
FF 31 3B 24
FF OS 33 24
FC 09 A7 F8 09 C8
F8 OA AC
OA 27 52 8E F7 33 lA
lE3S-1F
10
2C 8C 3A 11
27 87 3A OE
CO .B. B4

Yes, so store In the ten's counter
Inlt the one's counter
If past screen's edge, Inc. scroll ctr

Otherwise, Inc. screen position ctr
Increment text position pointer
Finished doing_ unlt's movement?
Finished doing ten's movement?
Yes, so display screen

The rest of the EDIT subcommands are
Inactive if in the get_parm mode

9F BC 04 .B. 8B 02 .B. BA

*/
for a K character
the text position pointer
End_of_record •
Bell If at the end of the file

/* DE L_L1 NE
Test
Save
Ca 11
Ring

Call Start_of_record
Delete the record
Call Flx_FF
Restore the text position pointer
Go extend the next line
Call Monc.Be 11

/* INSERT_LINE */
Test for a L character
save the text position pointer
Call Compact
Call Start_of_record

Call Move_'ine to Insert a new record
Call Extend

The following EDIT subcommands won't
work If at the end of the record

FB 07 3A 74
80 73 90 73
04 JJ. 41
04 .B 95
Fa 01 A7
Fa 00 04 1 83
04 T 96 30 49

9F FB OB 3A 59
80 73 90 73
04 .B. A3 10
00 32 54
90 B7 80 A7
20 04 .B. 95
47 50 10 3A 44
04 .y. 19
12 42 BO 02 AD
CO .B. AD
04 .l AI 30 4C

22

Yo 2C
31
35
39
3C
40
44
49
4C
51
54

59
50
61
64
67
6A
6F

74

7C 9C FF 20 3B 80
81 9C 50
83 04 ~ 67 04 .l DO 88
8A CO .B. EA

/*
80 FB E5 3A AO
91 80 73 90 73
95 F8 20 50 10
99 04 II 8B 3A 9S
9E 30 BB

/* TEXT */
Is the character a letter?
Yes, so store It In the text area
Print It
Jump to cursor_right •

ERASE_LINE */ _
Test for a E character
Save the .text position pointer
Store blanks In the rest of the line
Call Test",:,eof

AO
A4
A9

FB 01 3A AB
Fa 01 04 !i 26
30 B7

/* DEL_CHAR */
Test for a 0 character
Call Delete

/* INSERT_CHAR */
Test for a C character
Call Insert
Save the text position pointer
Call Start_of_record
Print a CR
Get the screen's horizontal size
Ca 11 Tes t_eof .
Call Screen_print
Blank out the rest of the line

restore text position ptr
to original position

AB
BO
B7
BB
BE
C2
C7
CC
02
08
DB
OF
E3
E7

FB 07 CA .B. BO
Fa 01 04 ~ EE 3A 29
80 73 90 73
04 .B. 9S
04 .l 00 80
DA 27 AB SF A7
04 .B. 8B 32 08
40 04 .B. 52 30 C7
2B F8 20 04 ~ 67
8B 3A 02
87 AF 8E A7
D4 .l DO 80
a7 C2 1 3E
27 04 .l DO 89 30 E3

Restore the
Print a CR
If done, go
Move cursor

scroll counter •

23

See If we have room to Insert chars.

Make room to Insert characters

Restore byte where ma~ker was placed
F11' resulting hole wIth blanks

Couldn't Insert, so restore text
POSt ptr. and byte where marker
was placed

/* DELETE */

/* INSERT */
Save the number of char. to Insert
Store a marker to Indicate finIshed
Call En~of_record

9F A7 AB
00 73 Fa 00 50 10
04 .R A3
90 BC 80 AC 2C
20 00 FB 20 3A 1F
27 87 CA Y. Ff
20 00 32 12
5C 2C 30 OA
12 02 5C
2C F8 20 5C 28 88 3A 15
05
20 00 3A IE
12 02 SO D5

Y. EE
F1
F7
FA
FF

,11 05
OA
OE
12
15
10
IE
22

•

Save number of bytes to be deleted
Set upa temporary pointer
Call Test_eof
Delete characters
Fill thee-esultlng hole with blanks

•
92 F8 74 AS F8 00 DS

PB */
Inlt the number of pages to move back
Do we want to move back more than one?
If 0 pales entered, set to one page
Ca'l screen_up
Zero,th. line counter

PF */
Inlt tht number of pages to move up
Do we want to move up more than one?
If 0 pales entered, ~et to one
Save the text position pointer
Get the screen home address
Get ,the screen's vertIcal size
Call End_of_record
Do we need to skip over a dotted line?
Yes, so decrement temp. line counter
Hav~ wareached the end of the file?
No, ~o decrement the tem~. line ctr
FIniShed moving all pa.es?
Yes, so go restore text position pointer
Call Start_of_record

/* TOP */
Jump back to register Inlt In MAIN

24

!t 98
!:JC
9F
A2

18 08 3A 98
F8 01 AC
04 ! 57
05

/* BOTTOM */
Move the display to the end of the file
Then moVe the display back a page
Call screen_up 4It

A3 F8 05 04 ! 45 33 DC
AA 04!i EO
AD 04 1 E9 30 CF

B2 OA 33 CA 1 AS
B7 BC AC Bl
BA 4C 3A BA 2C
BE 04 li EO
Cl 04 Ii 95
C4 F8 00 50 30 CF

C9 04 H EO
CC 04 Ii 89
CF F8 OF B8
02 28 98 3A 02
06 F8 ~ SA F8 93 AA
DC Fa 70 A6 05

/* SAVE */
Call Get_parm
Call Get_name
Call Mon.Save

/* LOAD */
Ring bell If In Get_parm mode
Start loading at the end of the

current file
Call Get_name
Call Mon.Load
Write an end-of-flle mark In text area

/* VERIFY */
Call Get_name
Call Mon.Verlfy
Do a fixed delay

Restore R(A) to point ~o Mem_access
Jump to register Inlt In MAIN

/* GET_NAME*/
EO 04 1 OD Print 'ENTER FILE NAME ->'
E3 OC 45 4E S4 45 S2 20
EA 46 49 4C 45 20
EF 4E 41 40 45 20 20 BE
F6 04 ~ AO Call BUff_lnlt
F9 04 ~ 05 Call Mon.lnbuff
FC 05

4It

FO
! 05

OB
OF
14
1B
lE
22
27
2C
2F
34
37
3B
42

/*
F8 04 B7 D4 ~ AE 33 OB
F8 .e BC F8 66 AC
9C 73 8C 73
F8 05 D4 ! 45
12 42 A7 02 B7 33 42
Fa 68 A9
49 73 09 73
87 59 29 97 59
OC A7 F8 00 5C
40 32 34
04 §. .67 30 2C
87 20 50
04 1 DO 80
19 12 42 59 29 02 S9
CO ~ 06

PRINT */
Call Mon.Expr4
Inlt default to screen
Save output vector
Call Get_t)arm
Restore output vector
Set up a ptr to the output vector
Save the current output vector
Store the new output vector
Insert a marker to signal when done
Print the file until we hit the marker

Restore the byte where marker was put
Print a CR
Restore the old output vector

4It

•
A 45

~7

IIC
50
55
5B
SE
62
67
60
71
73
79
70
83
87
8C
91

OA 32
04 .a. 7E 33 95
90 73 80 73
OA 33 F6 3B 73
59 011 .c. 81 33 93
04 R A3
90 73 80 73
OA 33 F6 3B 73
59 04 !l 81 33 91
90 73 80 73
OA 33
59 12 42 AC 02 BC
09 F6 3B 8C
59 12 42 AD 02 BO
09 F6 3B 8C
12 112 AE 02 BE
F8 00 OA 32 05
12 12 12 12 OS

/* GET_PARM */
Set screen to get_parm mode
Call MAIN
Save the first parameter
Finished getting all parameters?
No, so call MAIN
Call End_of_record
Save the second parameter
Finished getting all parameters?
No, so call MAIN
save the third parameter

Put the first parameter in R(C)
Any more parameters?
Yes, so put It In R(D)
Any more parameters?
Yes, so put It In R(E)
Set the screen to the normal mode
Restore the stack If premature exit

25

•

1* FIND_STRING *1
96 119 FB 2F 32 A3 . Search for the first 'I'
9B 89 FF 110 C3 M116 30 96
A3 E9 Set X to point to the command line
All 89 B7 Save the address of the first 'I'
A6 F8 00 A7 Inlt the first parm's length ctr
A9 97 A9 Put the address of the first 'I' In R(9)
AB 40 32 CC Are we at the end of the file?
AE F3 3A AB 19 17 No, so does first character match?
B3 F8 2F F3 32 C4 Yes, so test for end of the first parm.
B8 F8 3F F3 32 C1 No, so test for a wild card character
BO 00 F3 3A A6 No, so see if the text char. matches
C1 10 30 B1 Yes, so see If the rest matches
C4 87 AB Match found, so back up the text
C6 20 2B 8B 3A C6 pOSe ptr. to start of match
CB 05
CC F6 8B CA H 69 05 If nothing was found, print 'NOT FOUND'

1* FIND *1
02 AB 98 BO 88 AD
07 D4 R A3
DA 04! 96 33 01
OF 04.B. 95
E2 90 B8 80 A8
E6 04!l EE
E9 05

Call End_of_record
Call Find_string
Call Start_of_record
Found match, so set screen
Call Display_screen

than
parms.

1* MOVE, COpy *1
Entry for Copy
Entry for Move
Call Get_parm
Put selection flag in R(1).0
Call Mon.Test
Ring bell If third parm, is less

second and greater than first
22
12 3B 17

CA 1 A8 C8
73
04 A 115 12 C3 ~ 06

DA 33
F8 FF
F8 OF
02 A1
04 1. F7
8C 52 80 F7
9C 52 90 77

EA
FO
F3
FC
FE

1. 01
06•

Find the end of the text
Add the length of (parm 2 - parm 1)

to the end of the text address

Ring the Bell if we exceeded the
memory size limit

Insert a marker to signal all done
Extend the text area
Restore the byte where marker was put
If parm 3 < parm 1 & parm 2, then

update both parms. 1 & 2

Insert a marker byte
Move the block of text to the new loco
Restore the byte where marker was put
If the command was Move, then erase

the old block of text
Go print the first page o~ the file
Ca11 Mon. Be11

•

•

, I' + 1
parm.

1 i ne p t r
Call Compact
Reset the command
Call Find_string
Cal 1 t-1o n • 13 ell

Save the length In R(I).1
Call Delete
Skip Insert If null string
Ca11 Ex tend
Get address of the second 'I' + 1
Crlll Insert
Insert the second parm Into record

Shift result Into selection flag

1* CHANGE *1
Ring Bell If in Get_parm mode
Get the screen's home address
Call Find_string
Save the adrlress of the second
Determine length of the second

8E F5 22 9E 75 12 33 82
FF 00
81 7E Al
98 BB 88 ,\B
4B 3A IE
8B 52 8F F4 A7
913 52 9F 74 B7
2B
DA 21 73 nA 23 52
87 F7 12 97 77 33 82
OC 52 F8 00 5C
57 27 213 OB 3A 3F.
02 57 27 5B
81 F6 Al 3B 62 IF
8F 52 8E F4 AE 22
9F 52 9E 74 BE 12
8D F4 AD 22 9D 74 BD 12
9D BC 8D AC
OE 52 F8 00 5E 30 70
2C 57 27 OC 3A 6D
02 575E
81 32 7F
ID OD 5E IE 3A 79
CU l~ 92
04 1 A8 30 7F

AB DA 33 CA 1 A8
A9 98 BD 88 AD
D4 K 96 33 DA
AC 19 89 137
49 FB 2F 32 A9
89 FF 40 C3 M 46 lC 30 98
8C Bl
87 D4 \~ 26
91 32 CA
D4 T 96
97 A9
91 D4 V EE 3A D4
U9 FB 2F 32 C7
49 5D ID 30 BD
D4 .!J. 41
F8 00 A9
D4 K 96 3B 97 30 7F
D4 1 A8 co X E2 D5

87
8D
92
97
9B
AO
A9
AB
AF
B2
B5
137
BD
C2
C7
CA
CD
D4

Y OD
15
17
lA
IE
21
26
2B
2C
32
39
3E
44
48
4E
54
SA
62
66
6D
73
76
79
7F
82

26

so move up a line
for a HOM character .•
so move cursor to home locatio
back to Outchar routine

Yes,
Test
Yes,
Jump

1* OUTCHAR EXTENSION *1
Test for a VT character
See If we Can move up a lineE9

F9
98 7F 00 B8

1: C5

FB EB 3A Fl
88 FF 20 33
98 FF .u 3B
88 FF 20 A8
FB OF 3A F9
/\8 F8 EO B8
9F FF 20 CO
uO

DB
DF
E4
E9
Fl
F5
F9
FF

21

•
MODIFICATIONS TO THE CLUB VDU :BOARD

P Muir

The accompanying sketch

IF #18 p32 (or Best of

2)

The following are several modifications that I have made to the

club VDU board to inorease it's flexibility.

is modifiod from John Myszkowski's article in

Ipso II1-179).

1) The mode control chip 4508 is enabled if the address is

FCOO-FFFF. By using &n 8 input gate, this can be reduced to a
range of FFF8-FFFF. This frees up almost lK of RAM. I used

an 8 input NAND gate (40~6) on address lines A3 to A9 plus the

chip enable 2r-eviously supplying the 4.508 (pin '1 of chip 10).
I mounted the chip on a small PC board elevated from the main

board in the lower right hand corner using two small bolta and

rubber washers. There is a spa.re inverter avai}.able on the

l~049 hex inverter. Of course J an 8 input Art» gate would simplify
the wiring.

I have reversed the connections tor the alphanumerics/serni­

~aphics and the inverse functions on the 6847 since in the

semigraphics-4 mode the current configuration restricted its
colour ran«e:

aIXX XXXX Alphanumerics GeCe LLLL Semi~raphics-4

3) To get the clear picture required for the high resolution

graphics, I am curreJltly running the 1802 at 3.58 MHz which

eliminates interference froll the 1802e;,lock and makes the addition
of filtering capacitors 8uperfiuwe. By using a switch it is

possible to select 3.5aMHz or a ••con~elower speed.
4) To further enhance the picture. ,I use direct video input wi1h

luminance alone tor high contrast black and white or with full
composite for colou~. The latter,:Ls not as sharp in spite of
adding trimming pots as seen in tke di.gram. None of these are
needed if luminance is used. The cOllposite video is 8upposedl,y
obtained by" placing a diode between pins 13 and 14 of the 1372;
however, the crucial factor appears to be puttj.ng a positive vol t­

age on ~in 14. Reversing this will invert the signal.

•

•

28

5) To increase the signal streneth, 1 have added a transistor ~
inverter and amplifier stage on my home-brew mother board.

'fhis was initially built before switching to composite y:tdeo

cn.l'3.bilities but a single sts,ge noninvert::trg- amr- would 'Probe,bly

work as well.

I r.: curre:J. tly tlJ inktne of revarr.pine a board to set up an exter'1nl

character ~enerator for upper and lower case characters. This will

require an 8 bit counter for the row preset and horizontal sync as well

as further buffer control. If someone has one running please send a

note to Ipso.

I e~ also developing software for a. flexible Graphics control

sinC9 I am interested in having plotting and eventually '3D' graphic

capabilities. If anyone is working towards this please drop me a

line at the following address.

1552 Lovelady Cr,

Mississauga, Ontario,

Canada L4W2Z1
•

•

11&
~->
~

• :r
0
~
:l
t1- -.,

~&8
V't

J.
V\
~.'
"

..

__J-.• _
- ----

,

ci
0

~a->
, -

':! 10)
0....
~

~

o <
D \J-0- ~ "--. 0

:r
-- ... :r 0

rl .". '.... 0
."

>' i :::r V r:
0- "cr - «

,,' ,'"

.. I:i
. ,'I; ,

~Ir

..,

•

•

30

STATUS DISPLAY

P Muir

The following is the entry program to my monitor which displays the

micro status in the following manner:

•
BREAK HI 1.0 0 00 53

1 FF F8
X 2 2 00 FF
p 3 3 FF 12

4 B8 01
D 00 5 B8 13
DF 01 6 FE 21

7 FE 00

8 FE E5

9 25 BB
A CA EF •B EeOO

c 34 BF
D EO 21
E 11 FA

F 20 00

I hnve only included the store routine since we all have different

display routines. 'fhe Break. address is that at which the monitor has

inserted a breakpoint (00 00 if none present). Note that this program

easily fits in the 1K of RAM made available at FC'OO-FFFF by revamping ~he

mode addressing. This will be described in another article.

'l'he obvious advantage to the program is that it shows all registers

and although the program counter is different, the breakpoint address

shows it's previous location.

•

31

• FF 00 79 MARJ(...X,P FF 38- 98 GHI-8
01 E2 SEXr-2 39 73 STXD
02 73 STXD-D 3.1 87 G1O-7
03 7E SRLe 3B 73 STXD
04 FA ANI 3C 97 GHI-7
05 01 3D 73 STXD
06 73 STXD-DF 3E 86 GLO-6
07 90 GHI-O 3F 73 STXD
08 73 STXD FF 40 96 GHI-6
09 80 GLO-O . 41 73 STXD
0.1 73 STXD 42 85 GLO-5
OB 91 GHI-1 43 73 STXD
00 73 STXD 44 95 GHI-5
OD 81 GLO-l 45 73 STXD
oE 73 STXD 46 84 GLO-If
OF 93 GHI-3 47 75 STXD

FF 10 73 STXD 48 94 GHI-4
11 33 GLO-3 49 73 STXD
12 52 STR-e 4A 42 LDA-2 10-3
13 F8 LDI 4B 73 STXD
14 FF 40 42 LDA-2 HI-3
15 B1 PHI-1 4D 73 STXD
16 F8 LDI 4E 82 GLO-2
17 F7 4F Fe ADI
18 A1 PLO-1 FF 50 06 INITIAL POSIN-2

I

19 "£1 SEX-1 51 73 STXD• 1A 8F GLO-F 52 92 GHI-2
tB 73 STXD 53 70 ADCI
lC 9F GHI-F 54 00
1D 73 STXD 55 73 STXD
1E BE GLO-E 56 42 LDA-2 LO-1
1F '13 STXD 57 73 STXD

FF ·20 9E GHI-E 58 42 LDA-2 HI-l
21 73 STXD 59 73 STXD
22 eD Gt.;O-D 5.1 42 LDA-2 LO-O
23 73 STXD 513 73 STXD
24 9D GHI-O 50 42 LDA-2 HI-O
2.5 73 STXD 5D 73 STXD
26 80 G1O-O 5E 42 LDA-2 DF
27 73 STXD 5F 73 STXD
28 90 GHI-O FF 60 42 LDA-2 D
29 73 STXD 61 73 STXD
2A BE GLO-B 62 02 LDN-2 X,P
2B 73 STXD 63 51 STN-1
2C 9B GHI-B 64 D3 SEP-3
2D 73 STXD 65 CO LBR
2E f(A GLO-A 66 Te MONITOR LOCIN
2F 73 STxn 67 00

FF 30 9A GHI-A
31 '13 STXD :D3 AT 64 1S FOR RETURN IF
32 89 GLO-9 USD'fG REG SAVE ALONE

• 33 73 STXD iNTER WITH PC = HO
34 99 GHI-9
35 73 STXD
36 88 GLO-8
37 '1.3 STXD

o

•

•

•

Netronics Tiny Basic can run on all 1802 computers

Netronic Tiny Basic is a good interpreter for its size and price.
I think that non ELF II 1802 users have looked at this Tiny Basic
with some jealousy.
Well, no more jealousy now, for with some patches they also can
enjoy Netronics Tiny Basic.
However, you must have 4 K bytes of RAM from M 0000 - M OFFF.

Patches

A) Netronics Tiny Basic includes a software UAR/T that is
connected to the inverted EF 4 flag. That means that when the
terminal is on and no key is touched the EF 4 pin of the 1802
is "1" (+ 5 V).
This is contradictory with for example the RCA evaluations board.
Instructions regarding this inputflag are:

Address Present code Mnemonic
OOBD 3F BN 4
OOCI 37 B 4
OODO 3F BN 4
00D3 37 B 4
00D9 37 B 4
00F2 3F BN 4
OA5D 3F BN 4
OA63 3F BN 4
OA6A 3F BN 4
OAn 37 B 4

With this list you can invert the inputflag or use another EF-line.
For output Q is used. This is common on nearly all systems;
patches are hot necessary.

B) Cassetteroutines

Included in Tiny Basic are the SAVE and LOAD commands. These make
use of two subroutines in the ELF II monitor. Non ELF II owners
don't have this monitor and no such subroutines. They can't use
SAVE and LOAD. Fortunedly a solution is possible.
Netronics Tiny Basic ends at M OB87. Here we put the subroutines.

33

OB80 D3 7B Fa lD 3B 90 F8 07 lD
OB90 52 FF 01 33 91 39 87 7A 02 30 91 lD D3 F8 OD 35
OBAO 9F 35 9B FF 01 33 Al 3D A7 30 9C

Also we must not forget to modify the USER PROGRAM START address
at MOB87.

•

34

address.
OllD

present code
87

new code
AB •The subroutines are called with the SEP register technique.

The programcounter is RC. This must be initialized with the
new starting addresses.

address
09FE
OA01
OA2A
OA2D

present code
FF
65
FF
BA

new code
OB
88
OB
9D

While loading from tape data-bytes are output on the two
7-segment display's with OUT 4. You can change this is
necessary.

address
OA4D

present code
64

mnemonic
OUT 4

C) Co1dstart, Warmstart

Although Netronics Tiny Basic starts at page 01, it is easier to
have the cold start at M 0000 . For the warm start M 0003 would
then be suitable. Here after we can put a simple routine to jump
to the systems monitor via a USR Call.

address opcode comment
0000 COOlOO LBR 0100 cold start
0003 F83D LDI 3D delay
0005 BE PHI RE
0006 C00103 LBR 0103 warm start
0009 F8CO LDI CO monitor high page
OOOB BO PHI RO
OOOC 93 GHI R3 =: 00
OOOD AO PLO RO monitor Low == 00
OOOE EO SEX RO
OOOF 00 SEP RO jump monitor

The instructions at M 0003 and M 0005 could do with some explaining.
Included in Netronics Tiny Basic is a software UAR/T. With cold start
first the Baudrate is determined (Press CR) and the timing constant
is put in R(E) 1. Often however the monitor will also use R(E) 1 and
the timing constant will get lost.
When you use the warm start Tiny assumes that the timing constant
in R(E)l is available and will not again determine the Baudrate.
So we load first the delay constant in R(E)l when using warm start.
The value here given (3D) is for 300 BD and a processorc10ck of
1,75 MHz.
When your systems parameters are different you should look what
Tiny has put in R(E)l. (You could use the USR-function for this.)

•

•

35

• D) Cassette Loader

When you buy a Netronics Tiny Basic you get a manual and a
cassette tape. This saves you about 3000 key-strokes but when the
ELF II monitor is not at your disposal you can't read the
cassette.
A cassette loader program for ELF II format is listed below.

0000 90 B3 F8 06 A3 D3 93 B2 B7 F8 4E A2 F8 3E A7 F8
0010 00 BA AA E3 71 23 6E F8 F9 BD D7 3B 17 9D 3A lA
0020 D7 33 20 F8 01 BD AD D7 9D 7E BD 3B 27 D7 8D F6
0030 C7 7B 00 9D SA 8A 22 52 67 1A 30 20 1D D3 F8 OB
0040 35 40 35 3C FF 01 33 42 3D 48 30 3D 00 00 00

When the program detects a tape error the Q-LED goes on. Because
with the Netronics tape format half a cycle is measured it is
sensitive to changes in the zero-level. When you get a lot of
error messages often it helps to invert the polarity of the tape­
signal. In extreme cases you could try experimenting with the
timing constant at M 3F. The cassette load program uses EF 2 as
input flag and is based on a processorc10ck of 1,75 MHz.

This program is page re10catib1e. Put it on a page not written
over by Tiny Basic for example OCOO.
There are two startaddresses .for RO or R3 is programcounter.
For RO starting address is 00; for R3 starting address is 02.
Don't forget the page to complete the start address.
Loading starts at M 0000 it continues till the program on tape is
finished.
While loading the low address byte is output on the two 7-segment
display's.

•
address

38
present code

67 (OUT 7)

•

Enjoy Netronics Tiny Basic!

I' am working for a publishing company in Holland: "De Muiderkring".
We have 3 monthly magazines, 2 of them in the electronic field:
E1ektronica ABC and Radio Bulletin, and one in the field of radio
controlled model aeroplanes, boats etc.; HB model & techniek.
I'am writing a series in Radio Bulletin on the 1802 micro-processor
and can say with some pride that the series is quite successfu11.
Apart from writing I also developed the computerproject called
"Cosmicos". Cosmicos stands for Cosmac micro computersystem.
It is based on a small mainboard with 256 bytes RAM, 2 7-segement
display's for output and a binary input with pushbuttons and LED's.
A selection of expens ion boards is also available. All. of the
expension boards are based on a connnon bus, so when you put themiin
theconnector you are ready to go.
At the moment there are 5 expansionboards

1) A byte input/output board with AD/DA converter and comparator

2) An interface board with eight 7-segment display's hex keyboard
interface and cassette interface.

36

3) A 4 K RAM board (8 x 2114 L)

4) A 4 K EPROM board (2 x 2716)

5) A graphic display board with CDP 1864

6) A busboard with 5 connectors.

All these boards are doublesided plated through and the connector­
pads are goldplated. Because the boards are small the cost is
not prohibitive for hobbyistst.
A prototype of a 48 K dynamic RAM board is now running on my own
system and the looks of it are very good. Until now it has functioned
flawlessly. It is fed wmth 15 volt unstabilized, has its own
stabilisers and DC/DC convertor for the - 5V.
The simplicity of this board is due to the fact that I used the
8202 dynamic RAM controller from Intel.
I think the cost of the board will be in the range $ 30 - $ 40
and I will ask my boss if it is possible to make it also available
for Canadian and American fellow 1802 users.
When enough people are interested I am willing to write a short
article on it with schematics and board lay-out. The dynamic RAM
used is 4116.

•

So long 1802 friends! H.B. Stuurman
De Muiderkring b.v.
P.O. Box 10
1400 AA Bussum
Holland •

•

•

•

•

37

ELF II SERIAL I/O PACKAGE
--~--------~~~--~---~------~By: Wea Steiner

#1204 2725 Melfa Road,
Vancouver, B.C.,V6T 1N4

---------------------~------

If many of you other Elfers out there are frustrated by the
difficulty of serial I/O , as I was , then this program will
prove to be very helpful. I have an ELF II connected to the
Netronics VID and ASCII boards via RS232. For a long time I
was restriwted to the use of the two hex displayesbecause I
didn't know enough about software serial I/O to write my own
routines to print and receive characters from the Vln and
keyboard.

However , thanks to an article in IF #21 by D.JORENS I was
able to begin some serious programming. This article presen~

ted 80me short programs which performed the serial I/O. I
have adapted them to run with SCRT (ref. RCA 1800 user man­
ual p.61) for greater generallity and because this is the
technique I use for 99% of my programs.

The program occupies one page of memory with room to spare.
The following assumptions must be made before access is all­
owed to the8e routines.

(a) register 2 i8 the X register and points to a free
memory loeation a8 the stack.

(b) register 3 is the program counter.
(0) register 4,5 point to SCRT CALL and SCRT return res­

pectfully.

The program has been assembled starting at 0100h but can
be located on any page boundary with the following modifi­
cations: asaume program is assembled at xyOO then

•• all internal calls will be of the form D4 xy ••
•• LOCATION CONTENTS

xy31 xy
xy5D xy
xy22 xy
xyA7 xy

38
The following are examples of calls to the I/O routines. It 1s

assumed that R4 has the address of SCRTCL(SCRT call routine) and
R5 has the addre~s of SORTRT , R2 points to stack area of memory, •
and X=2 and R3 is the program counter.

(1) Printing a single character:

0507 ••
0508 F8 41
050A BF
050B D4 01 27
050E •• ••

Output:
A-

program code
LDI
PHI
SEP

more program

C'AI
15
4,A(CPRINT)
code

(2) Printing a string of immediate characters:

0814 •.
0815 D4 01 1D
0818 54 45 53
081B 54 00
081D .• ••

output:
TEST

program code
SIP 4,A(LNEPRT)

CITEST',#OO

more program code

•
(3) Printing an indexed string:

0234 49 4E 44 45 58 45 44 20 53 54 52 STR=C'INDEXED STR'

OE10 •• program code
OE11 D401 94 SEP 4,A(XPRINT)
OE14'02 34 OB A(STR),L(STR)
OE17 ••.• more program code

Output:
INDEXED STR_
----~-------~---~~~~----~~----~---------~------------- ---------

I keep this package on tape and load it in every time I begin
writing a new program. I usually use OOrF for the bottom of the
stack, 0100 - 01FF for the I/O routines and my main program
begins at 0200h.

Happy Elfing !!

•

39

• S CRT CAL L,
j THIS IS THE STANDARD CALL AND RETURN TECHNIQUES
JAS DESCRIBED ON PAGE 61 OF THE RCA 1800 USER
JMANUAL.

; THIS ROU!INE WILL PRINT THE ASCII EQUIVALENT OF
;THE BYTES FOLLOWING THE SCRT CALL TO LNEPRT. THE
;STRING OF BYTES MUST BE TERMINATED BY A OOh.
·,; CALLING SEQUENCE: SEP 4,A(LNEPRT)
; 'ASCII STRING',loO

S CRT RET URN

;
·,;JUMP TO CALLER VIA D3

P R I N T

·,
;R2 IS STACK PO INTER
; pop THE STACK
;SET UP R6 FOR NEXT RET

·,;LOAD ADDR OF CALLEE
;INTO REG 3

•,
·,
·•;SET UP R3 FOR RETURN

·,
•,
;JUMP TO SUB VIA REG ,

·,·,

;GET CHAR TO PRINT
;SAVE IT IN REG 15
JDONE IF DBYTE=OOh
;PRINT IT
;GET NEXT CHAR
;RETURN

JJUMP TO SUB, P=3 1=2
;REG 2 IS STACK POINTER
JSAVE
j RETURN
; ON
; STACK
;SAVE NEW RETURN IN R6

3
2
6

6

3
6
3
6
6
3
(,

3
CLLRET

6
15
LPRRET
4,A(CPRINT)
LNEPRT
5

3
6
3
6
3
2
2

6

6
RETRET

LIN E

·,
RETRET SEP
SCRTRT GHI

PHI
GLO
PLO
SEX
INC
LDXA
PLO
LDX
PHI
BR

CLLRET SEP
SCRTeL SEX

GHI
STXD
GLO
STXD
GRI
PHI
GLO
PLO
LM
PHI
LDA
PLO
BR

·,
LNEPRT LDA

PHI
BZ
SEP
BR

LPRRET SEP

0100
0100
0100
0100
0100
0100 D3
0101 E2
0102 96
0103 73
0104 86
0105 73
0106 93
0107 B6
0108 83
0109 A6
010.1 46
010B B3
010C 46
010D A3
010E 30 00
0110
0110
0110
0110 D3
0111 96
0112 B3
0113 86
0114 .13
0115 E2
0116 12
0117 72
0118 .16
0119 FO
011.1 B6
011B 3010
011an
011D
011D
011D
011D
011D
011D
011D
011D
011D 46
011E BF
011F 32 26
0121 D4 01 27
0124 30 1D
0126 D5

•

•

•

P R I N T

·,; THE FOLLOWING IS ADAPTED FROM THE ARTICLE IN
;IPSO FACfO #21 'ELF II SERIAL I/O BY D.J.JORENS'

; l' l·~

; THIS ROUTINE WILL OUTPUT THE ASCII BYTE IN RF.1
;USING RS232 SERIAL I/O. THE DELAY TIME IS SET AT
;78H.THE CONTENTS OF RF.1 ARE LOST. REGISTERS R7
;AND R14 ARE SAVED ON ENTRY AND RESTORED 01 EXIT.
·,
; CALLING SEQUENOE: SEP 4,A(CPRINT)

40

0127
0127
0127
0127
0127
0127
0127
0127
0127
0127 9E
0128 73
0129 8E
012A 73
01213 97
012C 73
012D 87
012E 73
012F
012F
012F
012F
012F 7A
0130 F8 01
0132 BE
0133 F8 8E
0135 AE
0136 F8 08
0138 AF
0139 7B
013A DE
013B 9F
013C 76
013D BF
013E CF
013F 7B
0140 38
0141 7A
0142 DE
0143 2F
0144 8F
0145 3A 3B
0147 7A
0148 DE
0149 DE
014A 12
014B 72
014C A7
014D 72
014E B7
014F 72
0150 AE
0151 '0

·,CPRINT GHl 14
STID
GLO 14
STXD
GHI 7
STXD
GLO 7
STXD

;
RESET Q
LDI >A(DELAY)
PHI 14
LDI (,A (DELAY)
PLO 14
LDI #08
PLO 15
SET Q
SIP 14

PRT010 GHI 15
SHRC
PHI 15
LSDF
SET Q
SIP
RESET Q
SEP 14
DEC 15
GLO 15
BNZ PRT010
RESET Q
SEP 14
SEP 14
INC 2
LDXA
PLO 7
LDXA
PHI 7
LDXA
PLO 14
LDX;

;SAVE R7 ,R14 ON STACK

•,
;R14 POINTS TO DELAY
;DELAY IS CALLED BY A
; SEP 14.

;BIT COUNTER

; POP THE STACK

•

•

-.

41
0152 BE PHI 14
0153 D5 SEP 5 ;RETURN

• 0154 •,
0154 R E C E I V E
0154
0154 ; THIS ROUTINE WILL WAIT FOR A KEY TO BE PRESSED
0154 ;O~ THE KEYBOARD. THE ASCII CODE WILL BE PUT IN
0154 ;RF.1. REGISTERS R7 AND R14 ARE SAVED AND RESTORED.
0154 •,
0154 ; CALLING SEQUENCE: SEP 4.A(ORECVE)
0154 •,
0154 9E CRECVE GHI 14
0155 73 STXD
0156 8E GLO 14
0157 73 S,TXD
0158 97 GHI 7
0159 73 STXD
015A 87 GLO 7
015B 73 STXD
015C F8 01 LDI)A(DELAY)
015E BE PHI 14
015F F8 8B LDI (A(DELAY)
0161 AE PLO 14
0162 Fo8100 LDI #00
0164 BF PHI 15
0165 F8 08 LDI #08
0167 AF PLO 15

• 0168 3F 68 RCV010 BN4 'RCV010 ;WAIT FOR KEY PRESS
016A F8 3C LDt 130
016B 11 1:1 IHC 14,INC 14
016B DE SEP 14
016F 3F 68 Blf4 RCV010
0171 DE RCV020 SEP 14
0172 FC 00 ADI 100
0174 37 78 B4 RCV030
0176 FF 00 8MI #00
0178 9F RCVO'O GHI 15
0179 76 SHRC
017A BF PHI 15
017B 2F DEC 15
0170 8F GLO 15
017D 3A 71 BNZ RCV020
017F DE SEP 14
0180 12 72 INC 2,LDXA
0182 A7 PLO 7
0183 72 B7 LDXA ,PHI 7
0185 72 AE LDXA ,PLO 14
0187 FO BE LDX ,PHI 14
0189 D5 SEP 5 ;RETURN

•

DEL A Y
•,
;THIS ROUTINE PERFORMS THE TIME DELAY FOR THE 300
;BAUD VID TERMINAL. THE TIME BYTE IS 78H AT 01SCH
;DELAY IS CA.LLED VIA SEP 14 FROM CPRINT AND.CRECVE.

; THIS ROUTINE WILL PRINT A STRING OF ASCII ENCOD­
;ED BYTES AT A SPECIFIED ADDRESS IN MEMORY.THE TWO

PARAMETERS ARE ! BYTES FOR THE ADDRgSS AND 1 BYTE
FOR THE LENG.. OF THE STRING.

CALLING SEQUElCE: SEP 1t~~ii~~~:£(STRING)

XPRINT GLO 8 ;SAVE RS.O,R7
STXD
GHI 7,STXD
GLO 7,STXD

;LOAD PARMETERS INTO R7 AMD R8.0
LDA 6,PHI 7
LDA 6,PLO 7
LDA 6,PLO 8

;PRINT THE CHARS UNTIL R8.0=0
XPR010 GLO e

BZ XPRO 20
DEC e
LDA 7 , PHI 15 ;LOAD CHAR AND SAVE FOR
SEP 4,A(CPRINT) ;OUTPUT BY CPRINT
BR XPRQ10

;NOW RESTORE REGISTERS AND RETURN
XPR020 INC 2 ;POP THE STACK

LDXA ,PLO 7
LDXA ,PHI 7
LDX ,PLO S
SEP 5

x P R I N T

•

•

•,.
t

;RETURN VIA SEP 3

;LOAD THE TIME BIT
;INTO R7.0
;COUNT DOWN

3
178
7
7
7
DEL010
DELEXT

•t·•·t

·,
DELEXT SEP
DELAY LDI

PLO
DEL010 DEC

GLO
BIZ
BR

018A
018A
018A
018A
018A
018A
018A
018.1 D3
018B F8 78
018D A7
018E 27
018F 87
0190 3A 8E
0192 30 8A
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194 88
0195 73
0196 97 73
0198 87 73
019.1
019A 46 B7
0196 46 A7
019E 46 A8
01AO
01AO 88
01A1 32 AB
01A3 28
01AI 47 BF
01A6 D4 01 27
01A9 30 AO
01AE
01AB 12
01AC 72 A7
01AE 72 B7
01BO FO A8
01B2 D5

42

MEMORY USED 179 BYTES AT 0100 TO 01B2

•

• Ken Mantei, Chemistry
Cal State College
San Bernardino, CA 92407

EPROM PROGIAMMlNG WITH AR 1802

43

The cost of a commercial EPROM programmer is high compared with parts costs. Consequently,

many experimenters and occasional users may prefer to build their own. 1, 2, 6 Here is a

method originally implemented on a Netronics Elk II 1802 system. 3 It is applicable to any

1802 system that includes RCAs 1853 N-1ine decoder chip, has functional high address lines,

and has some room to add two or three more ICs.

Since most 1802 systems are single voltage, the 2758 (lK bytes), 2716 (2K), and 2732 (4K)

5V EPROM family is a natural choice. 4,5 Each has 24 pins. 20 of these are data, address,

and supply voltage which are connected identically throughout the family. Only pins 18-21

vary in function. See Fig. 1.

The key to this programming circuit is the triggering of a 74123 (or similar) monostable

~u1tivibrator by an 1802 output instruction to program each byte. A 64 instruction sets

the address lines, puts the byte on the data lines, and initiates one flip-flop cycle of

the 74123. The Q1 output of the 74123 "one-eiOt" puts the 1802 into a 50 msec WAIT state

freezing the address and data lines. Ql or'" (depending on the EPROM) also provides the

programming pulse. Fig. 2 shows how a 2716 is connected for programming.

SOFTWARE

Data to be EPROMmed must be loaded into RAM of the 1802 systems in a location such that as

a date byte is output by an 1802 instruction, the address lines connected to the EPROM will

put the byte in the proper location. For example, to completely program a 2716 that will

be used at EOOO-E7FF that data could be loaded into RAM at 0800-0FFF or 1000-17FF, etc.

The programming software is only 33 bytes long. It is keyed in by hand at 0000 so that it

executes as soon as the 1802 is put in the RUN mode. See Listing 1. A 64 instruction

outputs bytes to a hex LED display on the most systems - change this to 62, 63 or whatever

your system uses for display •

•

44

•HARDWARE

24- and 16-pin wire-wrap sockets should be installed on a kluge board tied into the 1802

system bus. Though not required for EPROM programming, a chip-select signal is needed to

read the programmed EPROM. One. or two sockets for this might also be installed now. See

Fig. 3 for sample OS circuits. Wire on all permanent circuitry shown in Figs 1 and 2. The

WAIT signal shown ties into pin 2 of the 1802 regardless of how this pin is labled on your

system (it is called LOAD on the Elf II). The 164 line must come from an 1853 N-line

Decoder. Attempts to trigger the 74123 with individual N-lines or N-lines ANDed with TPB

caused the WAIT to begin before or after the address lines were all valid. Add an 1853 if

your system does not have one.

Knowing that the 1802 WAITS 50 msec for each byte programmed can be used to trim the RC

network of the 74123 one-shot. Load in some sample data to be programmed. Key in the

programming program. Without applying 2SV, time a dry run until the LED output stops

changing. It should take about 61 seconds per K bytes to data. One or two 1M resistors

added in parallel with the 68K will probably be needed to adjust the RC network. •

A 24V programming power supply, as shown in Fig. 4, is a close enough approximation to the

25V specified. Its current is limited to about 25 ma at 24V, a 10 ma margin above the

currect actually drawn during programming.

Because this author programs infrequently using different EPROMs, and because jumper wires

with clips at each end are less expensive and more versitile than switches this addittedly

messy approach will be described for connections to the pins 18-21 of the EPROM programming

socket. After correct programming of the EPROM has been verified, these pins may be more

permanently wired.

•

45

L

2.

3.

4.

5.

7.

Load into RAM the data to be EPROMmed (probably from cassette). The starting address

must be chosed as mentioned above so the address lines will guide the data into the

proper location in EPROM.

Customize the programming program, Listing 1, by inserting the starting address of the

date in RAM and the number of bytes to be programmed. Key this in at address 0000.

Jumper pin 1 of the 74123 to ground.

Jumper p1ns 18-21 as shown in the Table to program the particular EPROM used,

connecting the 25V supply last.

Flip the RUN switch of the 1802 system on and watch the bytes displayed as they are

programmed. Flip off when programming is completed.

Disconnect the 25V jumper first, then the rest of the jumpers.

Jumper p1ns 18-21 as shown in the Table to read the particular EPROM used. Verify

that all bytes were correctly programmed. I have never experienced failure to a

program a few bits but have heard that occasionally it happens, requi.ring that the

programming procedure is repeated.

A WARNING ABOUT ERASING

Do not try to read an EPROM while erasing it. If it is activated under strong UV light, it

gets exceedingly hot and is ruined. This point is not mentioned elsewhere but personal

experience has proven it. Pull the EPROM out of its socket Bnd set it into conductive foam

for erasure •

•

Point regis tor Z to start of data

46
ADDRESS

0000

0007

FS

FS

BYTES

B2FS

B7FS

A2E2

A7

COMMENTS

to be EPROMmed.

Load regis tor 7 with the number

(in hexidecimal) of bytes to be

EPROMmed.

•

•
0000

0013

0017

, 001S

001F

FS 02 B9 FS 72 A9

29 99 3A 13

64

27 97 3A 00 S7 3A OD

30 IF

Provides 10 mses rest between

programming pulses when using.

1.79 MHZ clock.

Output instruction to triggers

one-shot and display bytes.

Decrement number of bytes to

program out loop until finished

STOP •
Listing 1 Programming Program

EPROM References

•

1.

2.

3.

4.

5.

6.

"The 'El Cheapo' EPROM Programmer" Kilobaud (March 1979) p. 46.

"IS02 EPROM Programming" Kilobaud Microcomputing (March 19S0) p. 146.

"Expanding the Elf II" Pop. Elec. (March 1975) p, 62.

2716 Spec Sheets by Intel and by Texas Instruments.

"E-PROM Doubles Bit Density Without Adding a Pin" Electronics (August 16, 1979)

p. 126. Note: The article correctly states that 2716s and 2732s require

different polarity for the programming pulses, but has the

active high/active low information backwards.

"EPROMS and troubleshooting" Kilobaud (sept. 1980) p, 78.

.. A7
A6

~

AS• A
4

A
3

A2
A

1
AO
DO
01
O2

GND

1 24 +5V

2 23 A
8

3 22 A
9

4 21

5 20

6 19

7 18

8 17 0
7

9 16 0
6

10 15 .0
5

11 14 0
4

12 13 0
3

Fig 1
Supply

Common Connections for 2758,

2716, 2732 EPROM Family

47

All common connections as in Fig 1

Connections To Program a 2716. Dashed lines indicate temporary
jumpers. These are replaced by more f,ermanent connections to
~ (18), ~ (20), and +SV (21) after proqramming.

• (a)

Fig3 (a)

(b)

-cs

(b)

Chip Select Circuit for 2716 addressed at EOOO-E7FF
using a 4049 and a 4073.

2732 addressed at FOOO-FFFF using a 4012.

48

+24V

24V Reg.
390.IL

7824
_....

~"'I"~(..
(4) 9V transistor

~ batteries
" --...

Fig 5. Programming Power Supply

•

To Program To Read

pin 2758 2716 2732

21 +25V* +25V* All
20 +5V +5V +25v*

19 GND** A1 0 A,o
18 Q

1
Q

1 0"1

pin 2758 2716 2732

21 +Sv +5v A, ,

20 - - -MR MR MR

19 GND** A,n A,n- - -1B CS CS CS

•
Tables showing how jumpers are connected to program
and read different EPROM••

* Jumper this pin to ground through a 0.1 mf capacitor
before connecting the 25V supply to surpress possible
transients.

** Some 2758s may require +5v instead. 4

•

