Ipso Facto

The A-C-E Magazine

DEVOTED ENTIRELY TO THE COSMAC 1802
ARTICLES

THE TEXT EDITOR by Steve Nies
MODIFICATIONS T0Q THE CLUB VDU BOARD by P. Muir
STATUS DISPLAY by P. Muir

NETRONICS TINY BASIC FOR ALL 1802 SYSTEMS

by H.B. Stuurman
ELF II SERIAL 1/0 PACKAGE byWes Steiner
EPROM PROGRAMMING nITE AN |RBN2 by Ken Mantei

DEPARTHENTS

I¥81 Executive
Publishers Paae
Eaitonrial Listino
Acvertising Policy
Executive rile
fdelp

Letters of Contact
Errata IPSO #20
For Sale or Swap
Club Order Form
Vvote For Best Artical
embersnip Form
Mailer

JUNE 1981

ISSUE 23

IPSO FACTO is published by the ASSOCIATION OF COMPUTER EXPERIMENTERS
(A.C.E.), a non-profit, educational organization. Information in IPSO FACTO is
believed 1o be accurate and reliable. However, no responsibility is assumed by IPSO
FACTO or the ASSOCIATION OF COMPUTER EXPERIMENTERS for its use; nor
for uny infringements of patents or other rights of third parties which may result from

its use,

ASSOCIATION OF COMPUTER EXPERTIMENTERS {981 EXECUTIVE

Program 3
President: Co-ordinatory y
John Norris 41 6-239-8567 Jeff Davis 41 /A=Fr45=15 A .
Training
Past President:
Ken Bevis U16-277-2495 SISl 1 0=63759513
Secretary/Treasurer: - Ken Bewls
Mike Franklin 416-878-0740 Software
Co-Ordinator;
Hardware Co-ordinator: Wayne Bowdish L416-388-7116
Anthony Tekatch 416-957-7556
Editor:
Hardware Production Fred Pluthero 41 6-389-4070
and Sales:
Fred Pluthero 416-389-4070 Editorial Staff:
Publish Committee:
Densis Heiion 116-385-0798 o SeiniEbe
John Hanson 416-637-1076 Consultant:
Box Silecox 41 6-681-2848
Membership Co-ordinator:
Bernie Murphy 416-845-1630 Draughtsman:

Don MacKenzie L1 6-676-9084 John H_yszkouski 416-529-0250

ARTICLE SUBMISSIONS:

We can always use lots of software and hardware related articles of all types.
Inasmuch as editing consists of taking the path of least resistance, 'camera
ready' articles stand the best chance of getting in. Camera ready means

typed, single spaced, reasonably error free and done with a dark ribbon.
Diagrams should be large and clear (we can reduce them) and clearly labelled.
Don't let camera ready scare you off. If you don't have access to a typewriter,
by all means send in what you have, we still want to see what you've been up to.

Some important notes: First, please send us your original manuscript, not
a photocopy. The quality of most photocopies is invariably poor and such
articles get pushed to the back of the editorial 'stack'. Second, make
sure your diagrams and programs are accurate. We have enough trouble with
errors on our part; there's no way we'll ever catch yours,

MEMBERSHIP RENEWALS:

This is a bit pointless; if you got this issue, you're fully paid up. To help
you keep track, a note designating the status of your subscription should
appear on the mailing label of your issue, This will most probably take

the form of '2 of 6',

US MEMBERS:

We understand that a number of our US members are having trouble obtaining
Canadian currency. Don't bother, send in your membership renewal (or order
for DeFacto, hint, hint) in US funds, This also applies to overseas members,
if you can't come up with Canadian money easily enough, by all means send
cheque or money order in US fumds,

SEND ALL A.C.E. CORRESPONDENCE TO: Bernie Murphy,

102 McCraney Street,
Oakville, Ontario. L6H 1H6
Ca.naﬂ.a..

EDITORIAL LISTING

‘ Congratulations to D. Shroyer for his artical in PSSO FACTO 21

FULL BASIC FOR THE 1802 (REALLY!) It was the best artical. For this
he receives a free membership in ACE for one year.

In IPSO FACTO 22 The best artical was A FLOATING POINT MATH. PACKAGE.
by Wayne Bowcish, George Tom¢zak, and Ron Verlaan. ‘

We are going to run advertisements in IPSO FACTO commencing with the .
first fall issue. All issues for the next year will be mailed in the
first week of every other month. Commencing with October.

ADVERTISING POLICY

Members may still advertise their personal equipment free.

Advertisments for multiple items of Software, Hardware, and

Components will be clased as commercial and will be charged the
commercial rate.

ADVERTISING RATES

Qur rates are based on our circulation and type of publication.

Tentative rates are as follows.

I Full page $100, 00
1/2 page $50. 00
174 page $25. 00

Minimum of 1/4 paga.

All copy must be camera ready and be accompaniec by a certified

cheque or money order. Ennyone requiring more information may contact
our Acdvertising Manaqer

FRED PLUTHERO

c/o Assec’n of Computer Experimenters
c/o Bernie Murphy

102 McCraney street

Oakville, Ontario

Canada L6H 1H6

EXECUTIVE FILE

For our FORTH enthusiasts we are working on FORTH for the ACE system.
nhen it is done and working we will supply it to those who are
interested for a printing and mailing fee.

CLUB HARDWARE PRODUCTS

The club has had several requests recently to provide more information on the

ACE hardware projects.))

Thé club has produced, and maintains in stock, 44 pin KLUGE (wire wrap) boards,

an 8k EPROM (2708) board, a VIDEO DISPLAY UNIT (6847) board and a buffered 12 slot
BACKPLANE conforming to the club's buss. The boards are 6x9.5 inches, plated through,
and reflowed. The boards are produced by a commercial circuit board.mangfacturef.
Please refer to the last page of the newsletter for prices and ordering information,

and to the last pages of IPSO FACTO issue 21 for the club standard buss.

NEW PRODUCT ANNOUNCEMENT ---- NETRONICS ELF II TO ACE BACKPLANE ADAPTER$

Now netronics ELFII owners can use ACE boards with the new Netronics to ACE adapter..

The NAB is designed to plug into the underside of the ELF II motherboard and provide:
- 6 ACE 44 pin buss slots -

2 modified 86 pin slots

- 4DB 25 connector circuits

Serial I/0 with optional TTL or RS 232c drivers.

- System power buss distribution.

- price $§ .00

The 7.5 x12 inch board is designed to plug into a 86 pin edge connector soldered
to the bottom of the existing edgeconmector at buss slot 4 or 5 on the ELFII.

The ELF II is elevated to a 45 degree angle(makes reading the HEX LEDS and using
the HEX PAD easier) and the NAB plugs in behind, supporting the mother board and

its se]f: Club boards plug into the NAB and lay parallel to the motherboard.

The origional blue metal case for the ELF II is retained, but the base is discarded.
The new ELF IT occupies a 12 inch sgaare area.

The two 86 pin edge connecters are ideal for personal applications, such as serial
interfaces,uarts etc(I use mine for a hardware interface to a Quest Super Expansion
board). A1l Netronics signals are present, and one slot provides the signals on
both sides of the edgeconnector circuit to facilitate making homemade boards.

The serial/DB 25 connecter circuit is flexible enough to accommodate just about
any combination of periferal I/0 devices you may use. Both inverted and normal
signal levels may be used, in combination if needed. .

Boards are in stock !

PROJECTS IN THE WORKS

Currently, ACE is working on three new boards for the club buss. Tony Hill is
redesigning the 2708 Eprom board to accommodate 2716 Eproms. The board will
provide 16k, in two 8k blocks, and will also have an EPROM BURNER to help you
keep your favourite programs. THE board will be available in the fall.

Nearly completed is the 8" Disk Controller Board Project. Actually, the board
works fine and is in stock, but because the DMA circuit of the ELF II and QUEST .
ELF is dedicated to the HEXPAD, it will only work on the TEC 1802 at the present time.

Don't give up, the finest minds? in the club are working on an adapter for the
other micros. Look for an appropriate annoncement in the next issue of IPSO FACTO.

Finally, Don MacKenzie is ringing the final bugs out of a 32 k dynamic board.
This board will use 4116 dynamic rams, and with current prices, club users will
be able to add 32k of RAM to their systems for about $125.00.

Look for an announcement in the next issue of IPSO FACTO.

The club executive is considering projects for the next club year. One idea being .
considered is a new advanced 1802 board. Most of us use one of the commercial
"trainers', hexpad, leds etc. for I/0, and limited interface capability.

We would be interested in your comments and ideas. Please write to Bernie and let
us know if you would support a new board, what you want on it, what it should supnort.

Tied in to the hardware aspect of our commitment to the 1802, we are interested jn 5
developing a club standard monitor. Most of the comments we haye received on this
topic suggest we adopt Steve Nies version 2 of THE MONITOR. This proposal is
currently being evaluated by Wayne Bowdish. Please write to us and let us know

your ideas, and your support for this project. The club will consider selling

the club monitor on an appropriate medium if their is sufficient interest.

In order to facilitate the clubs expansion efforts in hardware and software next
year, a new position is being created in the executive - project coordinator.
With the clubs year coming to an end, the new executive will be elected in the next
few weeks. Again, write with your suggestions for new areas of activity.
JOHN WARE'S SOLUTION TO THE ELF II'S Short Memory.

MeEe Franklin, Milton Ont., June 1981.

I recently purchased a 16k 2114 static memory board from John Ware, 2257 6th Ave.,
Fort Worth Texas, 76110, phone 817-924-9506.

I am very pleased with the board, and recommend it to an ELF II owner interested
in adding static memory to his micro. John sells the bare board for $35.00, and
provides adequate documentation to assemble it.

The board is well designed and laid out, and quite well made for a "home built"
product. The board 's circuitry employs CMOS throughout, and has provision for

on board regulation if needed. It is the same size and pin out as Netronic's
boards, and 1ike Netronics products, provides no buss buffers. Like most 16k
boards, it uses a 4 to 16 decoder to address one of four 16k memory blocks.

The board is a good and economical addition to my ELF iIi, and I recommend it to
other club members. I suggest you call John first to make sure he has them in
stock, and to confirm the current price.

HELP

Claudio Pugliese Lituania 5457 (1431) Buenos Aires Argentia

Claudio would like coppies of the following articals from Dr Dobbs
Journal (1) Use a prom for a Character Generator

Vol. 2 No.5 p. 17 May 1977 by David Allen

(2) A Practical Low Cost Home/School uP System

Vol.2 No.5 pgs.34-44 May 1977 by J. Weisbecker

(3) Utilities and Music on THe Cosmac Elf

No. 19 Vol.2 IssueY p.30-33

(4) Programable 1K RAM plus 256 EPROM plus cassette

Recorder Vol.2 No.19 384 by Ed McCormick

Letters o;‘Contacﬁm-w

Robert Passafiume, 36504 Marlborough, SanDiego,
Cal. 92105.

. Would like to contact members on the west coast
primarily So. Calif.

ERRATA = 'The Monltor - Verslon 2' /P30 ~NO 20
* There are four typographical errors In the listing.

Change location | 9B from a 72 to a 73.

Change locations @ A2 and @ A3 from 3A 95 to 32 8D

Change locations A6 and @ A7 from 3A 95 to 32 8D

Change location f A9 from a 8D to a 95

6 FOR SALE
QUEST SUPER ELF with super board, Neutronics key hoard, Model 40
Teletype, Power supply (Quest). Askina $200.00 ‘
Dennis Battocchio 1305 Ontarin St. Apt.602 Burlington Ont, Canada
Phone after 5:30P.N, (416)637=-5573 L7S 1YlI

FOR SALE: GQuest SUPER ELF 1802 system in cabinet. 4K
expansion board, monitor & tiny BASIC ROM, power supply, rf
mod, ASCII keyboard, many tapes ,manuals and magazines

including Ipso Facto 1-18. All for only $300. e .
Richard Moffie 20121 Lemawell St. #3 Canoga Park CA. 91306 U.S.A.
phone (213) 341-6098

FOR SALE: ELF II rev.C with Giant Bd. interface, 3ea. 4K memory Bds.

(12K total RAM), Samp power supply, FULL BASIC on cassette with

RPN Math Bd., 8SCII keyboard and Video Display Bd., All in Netronies

cabinets. Full Documentation and Manuals for machine language and

FULL BASIC. Software on cassettes and many 1802 based newsletters.

__ Complete ELF II Computer System- asking $650 or best offer.
Kevin Mast 308 Jackson Ave. Defiance NDhio 43512 usa .. :
phone (419)782-6147 '

3K Static RAM, compatible with TEC1802. Coded for
0000~-0BFF. Ceramic 2114's and all ic's on sockets.
Asking $90.00. Colin Nicholson, 19 Windermere Crt.,
Brampton, Ontario, Canada. 16X 2L5

2708 EPROM board for the "ACE" bus as advertised in

IPSO FACTO. Unused PCB with 4 24-pin sockets installed
and includes 3 unused 2708 Eproms, $25 U.S.

Tom Jones, 409 springdale ave., Fnterprise, Alabama, 86830

FOR SALE

1 Netronics 4K memory board
without 2102 RAM's. Includes
DIP switch addressing, fully
socketed, Asking $25 (US) or
best offer, Send SASE tos
David Schuler, 3032 Avon Road,
Bethlehem, Pa. 18017, USsa,

SELL OR SAAP

TEKTRON 1802 SYSTEM consisting of Tektron 1802 boarc, Tektron MB1
3/4 K memory with | page of CMOS, M32 7K memory board, 33KSR ‘
Teletype, Teletype UART interface bonard, Keyboard, Keyboard apd;
cassette interface board (incomplete), ACE VDU-Memory board with _
chips and sockets (not assembled), "Hammond case wired with 6 22 pin
sockets, Heat sinkec regulated on case All tested and complete
except for Video board and keyboard interface Asking $400.00 or
will consider HI-F1 components. Mike Pupeza 644 Bathurst St.
Toronto ontario Canada M55 2R1 phone (416)535=4127

Steve Nies
2510 Deas Street
- Bossler City, LA 71111

The Text Editor

After finishing work on my last major project,'The Monitor!',
| realized after hand coding the entlre 2K program how nice It
would be to have an assembler. However, before | could use an
assembler, | had to have some way of editing the source text.

After using IBM's full screen editor last summer, | declided to
include this feature in my edlitor. The major advantage of thls
method is that Ilne numbers are not needed. Instead, the entire
screen Is fllled with a page of text. |f you need to correct a
word, all you have to do is move the cursor over the word In error
and type in the corrections. The source text and the screen are
updated at the same time. /

A second advantage of this editor Is that any terminal can be
used. Even though the length of a line Is 80 characters, the screen
can be formatted to appear as small as 3 lines of 1 character or
as large as 24 lines of 80 characters. |f the horizontal width of
the screen Is less than 80 characters (mine Is 32, using the S68047),
the entire screen will scroll right or left to allow the user to

edit the entire line. 1'11 mentlion more about this feature later on
in the article.

An example of the screen format Is shown In figure 1. Notice
that the example Is of a 32 character display. The first line of
the display Is used to enter commands to the editor. Following
the command line is what | call a scale 1lne. Besides separating
the command line from the source area, a function of the scale

EDIT (=
scale line => |======e=- lowe=cecun 2ememmcmna 3=
THIS IS AN EXAMPLE OF THE TEXT

THIS IS A 32 CHARACTER SCREEN.

Command line

Source area

HI THERE!
Scale line => |=======-- lecmcccnaa 2mmmmmm——— 3~

Figure 1

1ine is to indlicate which column the cursor is in. The columns are
labeled by tens, so only the tens digit Is indicated. The units
diglit Is indicated by counting the number of hyphens since the
last number. The area between the scale lines Is the source area.

It is in this area that text Is entered and corrected, This
area will expand and contract depending on the amount of text
entered. The last lline .Is another scale lline to delimit the
display of the source area from the rest of the screen.

There are basically two ways to use the editor., The flrst
is by loading the editor into RAM and then establishing a
temporary command to call it. This is done by using the
memory examine command to change the end-of-table vector in
SYSTEM RAM to point to location Q 00 of the editor., The second
way is the method | prefer. All that is required is to place
the editor in ROM and then locate the editor ROM directly
behind the monitor ROM, This method does not require changing
any vectors at all.

There are several options for calling the editor, These
options are summarized In Table 1. At this point it might be
helpful to discuss some facts about the editor.

COMMAND DESCR{PTION
TEXT 2 " This sequence will iInltilize the text
INIT? Y 1000} area as well as the terminal's para-

meters to the default values., The
amount of memory assigned to the text
area has been specifled at 1000 (HEX)

bytes. .
TEXTS Same as above except that since the
INIT? Yl end of memory was not entered, the

editor willl perform a non-destructlive
search to find the physical end of RAM,
A1l of the available RAM is then
asslgned to the text area.

TEXT This sequence is used to allow the

INIT? N 10001 text area and terminal parameters
already established by an earlier
editing session to still be in effect.
Essentially this command Is a warm
start. Notice that the end-of-memory
parameter has been changed to 1000
bytes (HEX).

TEXTl Same as above except that the editor
INIT? N will assign all of the avalilable
memory to the text area.

Table 1

First, the editor assumes that the text starts at location 0000
and works its way up into higher memory. It is possible to set the
maximum amount of memory you would like to use as text. This feature
can be used to stop text from writing over any programs that are
higher up in memory. If you don't enter in the maximum amount of
memory to be used, the editor will do a non-destructive search to
determine the physical end of memory. All of the available RAM will

COMMAND DESCRIPTION

TEXT '"file name' 1000) This command will call the text
editor and then load the deslred
file Into the text area. This flle
must be an ASCII flle ONLY! The
end of the text area has been spe-
¢cifled to be at location 1000 (HEX).
The terminal's parameters are also
inittilized to thelr default values,
This command will perform similiar
to a cold start.

TEXT 'file name’ l. Same as above except that all of the
avallable memory has been assigned to
the text area.

Table 1 (continued)

then be used as the text area.

Second, if you tell the editor to initlilize the text area, It
will insert 13 CRs followed by a 00 byte to signal the end of the
fille. Before a line is edited, it is expanded (excess blanks are
inserted on the right) until the record length Is 80 characters. .
After the line Is edited, all ‘excess blanks on the right are removed.
This allows a line to be stored in RAM wlth greater efficiency.

This process of expanding and contracting a line is lnvlslhle to the
user, After the text area Is initilized, the terminal's parameters
are stored in SYSTEM RAM. The defaut terminal size Is 16 lines of

32 characters. These values are recorded at locations Q 48 and Q uC.
i f your terminal Is a different size, place the screen's horizontal
slze in HEX mioys 1 at locatlion Q 4B. Simlillarly, place the screen's
vertical size In HEX mlnus 3 at location Q 4C. !f you don't use the
correct values for your particular termlnal, the display will do all
sorts of strange things.

Finally, the editor has a feature that could use a blt of
explanation. | will be using the editor for some word processing
applications, so | need to know when | am coming to the end of a
physical plece of paper. With this thought in mind, | developed a
feature that would print a line of dots across the screen when you
are approaching the end of a physical page. This way, when you are
printing a flle and the printer hits this line, a form feed will be
generated. The printer will then continue printing as normal.

(The line of dots will not be printed.) The editor will default to
60 1llnes of text per page. |If you would like to change this value,
change the byte at location Q 4A to the deslred default value,

The page dividing line will not affect operation of the editor
in any way. If you need to move the cursor from one physical page
to the next physical page, the cursor will simply hop over the
page dlviding line. This feature tends to compllicate the editor
program somewhat, but | feel that the advantages outwelgh the extra
code requlred.

The rest of thls article will list the commands associated .
with the editor along with a short explanation on each.

1) EDIT R

This command is probably the most used command in the
entire edlitor. 1ts function is to allow the user to enter
and correct text. Basically, there are two modes that the
editor can be in when using this command. These modes are
called the normal and get_parm modes. The normal mode Is
when the user wants to enter or correct text. The editor is
in this mode most of the time. The get_parm mode is used when
you need to get parameters for some of the commands (ie. From
and To addresses for the SAVE command). This mode is indicated

by changling the hyphens of the scale line to colons. In this

mode, all you can do Is move the cursor around. Any command
or subcommnand that modifles text |s deactivated. After the
command obtalns the necessary parameters, the screen will
revert back to the normal mode. 1'l1l describe more about the

- get_parm mode later on In the article.

The edit command has several subcommands. These Subcommands
are all generated by using the keyboard's control characters,

In cases where the keyboard has a special key devoted to a
control character, ! will call that character by name. All other
control characters will be denoted by a bar over an ASCI| letter.
This will Indicate that you need to press the control key and

the letter to generate the subcommand.

Each of the EDIT subcommands will be listed along with a
short explanation on each. But first | would 1lke to mention
some notation | will be using In the descriptions. \

Flrst, If the control character has arrows around it (for
example <S>), this means that thils particular subcommand is
deactlvated while in the get_parm mode. Second, if a control
character is underlined, thls means that the bell will be rung
If elther you use this subcommand at the end of a line or if
the record is full, In listing the subcommands, | will first
list the name, then the hex representation, and then the key
that should be pressed. The explanation will then follow. Now
that the notation Is discussed, on to the subcommands!

A) Cursor right,09,HT (or TAB)

B) Cursor left,08,Backspace

C) Cursor up,05,U

D) Cursor down,0A,Line feed

These four subcommands are falrly self-explanatory.

However, one thing should be mentioned at this point. For

the text editor to work properly, the terminal must be

capable of supporting the following cursor movements:

CR,LF,BS,TAB (one horlzontal space),VT (similiar to a reverse

LF), and HOME. For those of you that are using the video

driver contalned in The Monitor, the editor will automatically

add the remaining functions (VT and HOME) to the driver.

E) CRLF,0D,CR

This command will move the cursor to the start of the
next line. If the cursor ls at the end of the text flle,
the flile will be expanded by 13 blank llnes. This expanslon
will also occur for the cursor down subcommand. |f the
avallable text area Is full, the bell will ring.

11

F) Escape edit,01,Q
This subcommand Is used to exit the edlt routine and
to move the cursor up to the command line.

G) Set screen,l13, S

This is used to move the cursor to any colump on the
screen that Is a multiple of ten. After pressing S, the
editor will walt for a number between 1 and 8 to be
entered. After this number is entered, the cursor will
move to the deslired column. Enterling anything besides 1
through 8 will cause the cursor to be moved to column 1
of the same llne.

H) Save parameter,10,P

This subcommand Is used in the get_parm mode. It's
purpose Is to indicate which line should be used as a param-
eter. For example, after enterling SAVE, the command wlll
be expecting both a FROM and TO address. Therefore, the
editor will enter the get_parm mode. The cursor Is then
moved to the line that Is to be used as the starting address.
The P key is then pressed to send the address of this line
to the save command. The same procédure is used to get the
TO address.

Even though this key was meant to be used iIn the
get_parm mode, It Is stil) active in the normal mode.
Pressing this key in the normal mode will take you back to
the monitor (wlthout clearing the screen). Even thoush you can
do this, It Is not a recommended procedure.

1) Delete 1lne,08, <KD
Thls subcommand will delete the Ilne where the cursor
is located from memory.

J) Insert llne,0C,<L>

This Is used to Insert a line where the cursor is
located. The llnes below the cursotr are moved down to make
room for the new lline.

K) Delete character,04,4D>

Pressing this key will remove the character under the
cursor from the line. The remalnder of the line will move to
the left to fill up the resulting hole.

L) Insert character,03,<C>
This subcommand will move the line one position to the
right and insert a blank where the cursor is located.

M) Erase till the end of Ilne,DS,ﬁEz
Used to erase the llne starting from where the cursor is
located untll the end of the line.

12

2) QUITY
This command will transfer executlon from the editor "
back to the monitor. ‘

By the way, | forgot to mentlion that commands may be
abbreviated. Look at the Comm_table In the editor to determine
the minimum abbrevlation.

3) PB) or PB digitd

If a digit was not entered along wlth the command, the
display will move back one page. |f a digit was entered, the
display wll11l move back that number of pages. If the display
is at the start of the flle, thls command will have no effect.

4) PFJ) or PF digitd

This command is simlllar to the PB command except that the
display moves forward. |f the display Is at the end of the flle,
this command wll11 have no effect.

5) TOPY
| Moves the display to the start of the file.
6) BOTTOMY
Moves the display to the last page in the flle.
7) SAVE S

This command will save a text flle on cassette. After entering
thls command, the screen will go into the get_parm mode. This
Indicates that the SAVE routine expects a FROM parameter. If you
wish to exlt the get_parm mode at any time, move the cursor to
the command 1lne (By uslng Escape edit) and then type QUITJ .

- In order to get the FROM address, move the gursor to the
flrst line that you wish to save and then press P. Similiarly, to
obtain the TO address, moye the cursor to the last llne that you
wish to record and press P. The editor will then clear the screen
and print "ENTER FILE NAME =>". Enter the deslred flle name along
with a CR. After the save routlne has finished recording the file,
It will do a fixed delay In order for the operator to read any
messages. The display will then return to the normal mode displaying
the start of the file.

8) LOAD R

This command will only work In the normal mode. lts purpose
Is to load a text flle from tape and concatenate it to an exlsting
file. If desired, the exlsting flle may simply consist of a
single blank line. After entering thils command, the editor will
prompt you for the file name and then proceed to load the fille.
After loading iIs complete, a flxed delay will occur to allow the
operator to read any messages. The screen will then dlsplay the
start of the flle In normal mode. ‘ :

; . . 1 3

9) VERIFYQ

After using the SAVE command, thls command should be used
to guarantee that the flle was transferred to the cassette
properly, If It wasn't, a message wil] be printed indicating
where the error occurred, After a fixed delay occurs to allow the
operator to read any messages, the screen will then be cleared
and the first page of the text will be displayed.

10) PRINT) or PRINT address)

This command will print the deslred section of text on an
output device, After entering this command, the screen will go
into the Get_parm mode to Indicate that it expects both FROM and
TO addresses. To enter these addresses, simply move the cursor
to the desired line and press cntl P (P). The edlitor will then
print the text starting with the FROM line ending at the TO line.

Another feature of this command Is that you can specify the
output device deslred. Entering PRINTQ without an address will
select the default value specifled at location X 05 (usually
set to a printer). To specify a different output device, enter
the starting address of Iit's software driver routlne.

At thls point | would llke to polnt out one fact concerning
the PRINT command. When the text belng printed reaches the end
of a record, only a Carraige Return Is printed. This is because
my printer (a Selectric) wlill perform both a CR and a Line Feed
upon occurrance of the CR character. If your printer requlres
use of the LF character, simply call a 1ittle routine that tests
for a CR while passing all other characters. If a CR Is found,
then output both a CR and a LF.

After the text Is printed, the output vector that was in
effect before this command was used s restored back Into SYSTEM RAM.

11) FIND /text string/ ’

* The purpose of this command Is to locate an occurrance of a
string in the text area. If a match s found, the screen is
adjusted so that the matched line Is the first llne on the screen.
If a match was not found, the edltor will print "NOT FOUND'.

Another feature of thls command Is the availabllity of a
wlld card character, Using the character '?' in the text string
will allow this position to match with any character. For example,
if we type FIND /| L??E THE 1802/ and had two lines in the text
area that were | LIKE THE 1802 and | LOVE THE 1802, both 1lnes would
match. This 1ittle feature has come Iin handy several timesi

One fact concerning thls command Is that the search starts
from the second 1ine shown on the screen until the end of the flle.
If you would 1lke to search the entire flle, you must move the
screen to the start of the file. This feature will allow a user
to selectively search part of the flle for a text string.

12) MOVE)

If It is needed to move a block of text from one location
to a new location, the user can use the MOVE command to accomplish
this. After MOVE) Is entered, the screen will go into the Get_parm
mode to get the FROM, TO, and NEW LOCATION addresses. If the NEW
LOCATION address is between the FROM and TO addresses, the bell will
be rung. After the block of text |s moved to It's new location,
the screen will display the first page of the text area.

14

13) COPY)

Simillar to the MOVE command except that a copy of the
block Is moved to the new location. The block itself is not
moved. This command will not work in the Get_parm mode.

14) CHANGE /text stringl/text string2/)

This command will change every occurrance of the first
string into the second string. The two strings can be of any
length, not necessarily the same .length. Only those lines past
the second llne shown on the screen until the end of the flle
are checked for a possible ocgurrance. If the string was not
found, the editor will print 'NOT FOUND', Notice that this
command Is deactivated In the Get_parm mode.

This about covers the description of the text editor.
For those people who would l1lke to know more about the "innards"
of the edlitor, | have Included a table of useful Information
at the end of thls article., At this point | would llke to mention
that while the editor has been tested to make sure it will work,
all possible combinatlions of commands and subcommands have not
been verified. |f any problems arise, | would appreclate it If
If you would send me a postcard explaining what happened and what
you were doing at the time. | will then try to flgure out why
the problem happened and wlll take steps to fix It.

| am starting a flle system of people who are using any of
the software |'ve submitted to IPSO FACTO. | would appreclate
It If anyone who uses thls software would send me a postcard
indicating what software you are using. Also please briefly
describe your system (amount of RAM and ROM, type of terminal, etc.)
and indicate any needs for the future. | need thls information
this Information to help me In designing programs for 1802 users.
Currently | am In the process of writing an Interactlve assembler
for the 1802. This assembler will have the capability of using
a linker/loader to generate relocatable object flles. Future plans
include a complier to translate TRS-80 level 2 Basic into 1802
machine language and a Robotic Control Language compller. | will
need Information about the systems of Indlvidual users to aid
me in talloring the software to fit the users needs. Please address
thelp?stcards or letters to the address glven at the start of this
article. ~

- = a Es W e W A S @ @ W s S W W W S W W W W W S W @ W @ W W = »

P.S. One fact that | neglected to mentlion concerns users with
video displays of less than 80 characters per llne. As text Is
entered at the edge of the display, the screen will scroll to the
left. However, It is possible for text to be éntered faster than
the screen wlll scroll. Thare are two optlons avallable at this
polnt. Elther type slower than the screen will scroll (not very
practical), or use the Set_screen subcommand to move the right
slide of the screen all the way over to the left. Text can then

be entered normally.

15
EDITOR FACT SHEET

R(X).1 / R(X).0 Byte _ Function
R(0) - Not Used 10 P - Save parameter
R(1) - Temporary 13 S =~ Set screen
R 2) - Stack 01 Q - Escape EDIT
R(3) - PC 08 BS - Cursor <--
R(4) - call 0A LF - Cursor {
R(5) - Return 05 U - Cursor?
R(6) - Return Addr. 0D CR = CRLF
R(7) - Temporary 09 HT - Cursor ==>
R(8) - Screen Home ptr. 08 (K) - Delete line
R(9) - Input Buffer 0¢C (L) - Insert line
R(A) - Memory Access Subr. 04 (D) - Delete character
R(B) =~ Temporary 03 (¢) - Insert character
R(C) - Temporary - ‘ 05 (E) -~ Erase till end of line
R(D) =~ Text position ptr. 20-»7F () - Text characters
R(E) -~ Line Ctr, / Screen Pos. Ctr.
R(F) - Saved accum. / Scroll Ctr. : Note: Cntl chars. with paren-

thesis around them indicate
deactivated In Get_parm.mode.
Cntl chars. that are underllined
will ring the bell If at the

end of the line
SYSTEM RAM USAGE

I Pagel|Screen|Screen R Screen
End memoryisize]l hor. vert.|Extended Output] type

l slze size] | 1
20 == 22 = 24 w= 26 === 28 mceecccacccwecccc~ce 32 mecwea store
21 == 23== 25 «e 27 === 29 wacwcccwcecccccccccaa 33 ewmem= fetch

MEMORY ACCESS ADDRESSES

54
01

45 00 Q 08
4 00

/* COMM_TABLE EXTENSION #/

/* MAIN */

D4 | E8 S 6B Y DB 68

N 78 3B 20
BD AD

N 99

00 5D 30 45

L DD 49 LE 49 54 3F A0

00 A9

J 05

00 A9 09 FB
F8 0D AD 52
02 5D 8D 3A
1l E8 S 92
1F 0D 68

J AD 33 65
FF BC AC

02 5¢C

0C 52

AA 0C FB
AA
DA

BE

43 F6 F9 80
CF 59 38 09

40 A9
F8 20 59 89

59
F8
3F

AA
22
AE

A9
30

3A

3A LE
00 5D

32 58

AF

Parameter was not specifled, so find

Init Qutput extension vector

Call Mon.Quote_search

If found quote, 1o0ad the desired flle
Call Mon,lLoad

Insert an end-of-file mark in the text
Print "INIT? *

Inlt the buffer polnter

Call Mon,Inbuff

Test to see If the flrst char., Is a
Yes, so Inlt the text area with CRs

lYl

Call Mon.Ram=init
Init video terminal parameters
Try to get a end-of-memory parameter

the end of memory with a non-
destructlve test

Init Mem Access subroutine PC

Store end-of-memory address at loc., S 90
Init Type_of_screen flag
Init text editor parameters
Call Fix_FF

Call Display_screen

Print a HOM character

Call Buff_init

Call Mon.|Inbuff

Call Mon.Comm_rec

/* MEM ACCESS »/

92

Save accumulator and get i{ndex
Elither save or load D reg., depending DF

/* BUFF_INIT %/

A3

Init ptr to end of buffer
Insert blanks into buffer

EE
F3
Fo
F9
FD

02
05
08
0C
10
17
1A
1€
21
26
2A
2D
2€
30
33
36
3B
3F
43
46
48
4B
4F

00 R A9
00
42 00 W u8
46 00 W 5B
00
00
00
00
00

00
bF
00
48

I
o
o

=
7e)
~N

==
> ©
W

Ow
o ro

FD

=)
<N

EA
87

o< op< clzi=]
m O
op<N

o o
=<

L DD 0D 8A

/* COMM_TABLE =/

(Edit) Protected
(Quit)

(Ph)

(Pf)

(Top)

(Bottom)

(Save)

(Load) Protected
(Verify)

(Print)

(Find)

(Copy) Protected
(Move)

(Change) Protected

/* CRLF =/

Print a CRLF

/* DISPLAY_SCREEN »/

DD 0C 8A

0C D4 R 52 30 05

Print a FF and a LF
Call Scale_line
Call CRLF

Put the screen home address in R(7)
Get the terminal vertical slze :

Save the Scroll ctr reg.

in R(C)

Get the terminal's horlzontal size
Get a character to be displayed
Test for the end of a record (CR)
Test for the end of a record (LF)

Char. was not a control char., print It

Call CRLF

Finished prlnting screen?
s horizontal slze

Get the terminal

Print the screen dividing line

Continue untll one whole line Is printed

call CRLF

Decrement vertical size counter

Restore Scroll counter

Finished printing screen?

Yes, s0 call Scale_line

Print a Home and a LF

Move the cursor down until the temp.
line ctr equals zero

Move the cursor to the right until the
temp screen position ctr equals

zero

18

/* SCREEN_PRINT =/

CE 2F D5 Skip print If temp.scroll not = 0
32 55 Skip print If past screen end
9F D4 S 67 D5 Otherwise, print the character .
/* SCALE_LINE »/
30 BB Init column Indicator to ASCI! zero
BC Save contents of scroll counter
27 AB Get terminal's horlzontal width
0A AC Init column's digit counter
8C 32 7F See if a diglt or a hyphen Is printed
33 32 75 Select either a hyphen or colon
3A C8 F8 2D
R 52 3A 6A Call Screen_print
AF D5 Restore scroll ctr and return
FC 01 BB Add one to the column tens digit
B 52 3A 67 Call Screen_print
7C
/* TEST_EOF »/
. Decrement text pointer

32 94 Test for an end-of=-file byte
0D 32 94 or a CR
01 D5 or a FF

/* START_OF_RECORD »*/
3A 9B 9D 32 Al Exit If at location 0000
R 8A 3A 95 Call Test_eof
D5 | 4"

/* END_OF_RECORD #/

Increment text pointer

R 8B 3A A2 Call Test_eof
/* EDIT =/
BD 88 AD Set the text ptr to.screen's home addr
T 96 38 1F 38 2F Call Extend
Q EE 30 BD ' Call Display_screen
1 A8 Call Mon.Bell
S 64 3B BD Get a character from the keyboard
/* ESC_EDIT »/ _
11 3A CD Test for a Q
AE AF Inlt Screen position ctr, scroll ctr,
U 4l and Line ctr. Then call Compact
/* CURSOR ¢ »/

19 3A E6 Test for a Backspace character
3A D7 9D 32 BA Ring bell if at location 0000
R 8A 32 B9 Call Test_eof
32 B3 If Screen pos. ptr. = 0, dec. scroll

Decrement Screen position counter
1L DD 88 30 BD Move the cursor to the left

FB
Du
1D
DA
8E
lE

FB
D4

FB
8D
D4
8D
2D
12
02
D4
9E
FF
D4
4D

D4 U

12
D4
1D
DA
Du

8D
98
DA
8D
2D
2D
27
27
2C
9n
D4
12
DA
CE

8D
D4
F8
D4
87
F8
30

01 3A FE
R 8B 32 BA

27 52
F7 33 Bl

19

/* CURSOR =3 #/

D4 L DD 89 30 8D

03 3A 08

U 66 CO R BD

1F 3A FE

73 .9p 73

R 95

3A 19 9D 32
D4 T 96 27

12 87 FD 50
7F 00 73

R A3

32 LA

01 BE

1 DD 8B

FB 0C 32 2C
41

42 BD 02 AD
1 A8 30 3E

AC 1C

28 FF 01 BE
I 57 30 38

73 9D 73
BD- 88 AD

29 A7

3A 68 9D 32
D4 R 95

4D FB OC 3A
87 32 7A

87 3A 62

8C 3A SF

B8 8D AS

Q EE

42 BD 02 AD
29 52 87 FS
FF 01 BE 30

73 9D 73

R 95

00 A7 c8 1D
R 8B 3A Al
FD 50 A7

20 D4 T B3
85

45
F5

30

88

D5
7E

17

73

05

Test for a Tab character

Call Test_eof

Increment text poslition ptr

Get the terminal's horlzontal width
Inc. Scroll ctr. If past the edge
Increment cursor position

/* CURSOR{ #/

Test for a Line feed character
Call Cursor_down

/* CURSOR f »/

Test for a U

Save the text position polnter
Call Start_of_record

Ring bell Tf at location 0000
Call Extend

Determine address of next line up

Call End_of_record

Test to see If we are at top of page

No, so decrement line counter

Print a Vertlcal Tab

Do we need to skip over a dotted llne?

Call Compact

No, so restore text position ptr

Call Mon.Bell

We need to move the display back a
page, 50 move the cursor to the
last line of the preceeding page

/* SCREEN_UP =/

Save the text position polinter
Get the screen's home address
Get the terminal's vertical size

Call Start_of_record
Do we need to skip over a dotted line?
Yes, so decrement the temp. line ctr.
Decrement the line counter
Finished moving up pages?
Update the screen home address
Call Display_screen
Restore the text position pointer
Calculate line ctr value for less

than one page moves

/* EXTEND */

Save the text position pointer

Call Start_of_record

Count the number of characters for
this llne

Caleculate the number of blanks needed

Call Move_line

20

8D 73
4C 3A
9C BB
87 52
F8 91
8C F7

AC
B9
8C
8C
A9
29

/* MOVE_LINE =/

8D 73 BC

2C

AB

F4 AC 9C 7C 00 BC
E9

89C 77 3B DA

D4 | A8 30 85

0D 52
2B 5C
02 C8
8C 52
38 E9
9F FD

F8
2C
2C
8D

1F

coy 1o

FB 18

3A

D4 R 95
D4 U 66

8F 3A

13

00 5D OB

0B 3A E1

9F 5C

F7 9C 52 9D 77

38 85

/* CRLF =/

E3

D4 | DD 8D CO R BD

. Yes, so zero screen position counter

Save the text poslition pointer)
Find the end of the flle ‘

Add amount of extension to end of flle

Set up a ptr to the end of memory limit

See |f exceeded memory limlt

Yes, so ring the bell

Restore X ptr

Insert a marker to Indicaté end of move

Extend flle

Restore byte where marker was inserted

Fil1l the resulting hole with the filler
character contalned in R(F),1

Was the filler char. a CR?

Yes, so jump to Fix_FF

Test for a CR

Call Start_of_record |
Call Cursor_down |
Is the scroll counter equal to zero?

Yes, so print a CR

F8 00 AF CO R B4 No, so zero It and jump to Display_screen
/* FIX_FF »/

8D 73 9p 73 Save the text position pointer .

F8 FF BD AD Set up a ptr to the start of file -

DA 25 52 Get the llines per physical page limit

;g 01 A7 inlt a ctr that counts the no. of CRs

22 D4 R A3 12 Call End_of_record

0D FC 00 32 63 Get the end-of-record character

87 F3 32 3¢ If the number of CRs |s below the

17 F8 oD 5D 30 27 1imlit, store a CR

F8 0C 5D 30 24 Otherwise, store a Form Feed
/* COMPACT =/

8D 73 9D 73 Save the text position polnter

D4 R A3 Call End_of_record

9D BB 8D AB

F8 00 A7 38 17 Initllize a temporary counter

8D 3A 57 9D 32 5E Count the number of excess blanks

2D 0D FB 20 32 50 1D that we can remove from the line

4B 5D 1D 3A SE Compress the line

CoO T 85 Go restore the text position pointer

73 9D 73
R A3

0D 3A 8A
29 A7

0D 50 1D F8 00 5D 2D

21

/* CURSOR_DOWN =/

D4 T B3 3B 88
00 5D €O I DS

00 B7

I 96 33 85

12 02 AD
BD 7C 00
U 41

12 87 Fs
7F 00 73
R 95 2D

29 52

FB 0C 3A
FC 01 BE

FC 51 73
73

73 AD
BD

C3
F7 33 D4

D4 | DD 8A 12

FC 01 BE
1l DD 8A

F7 33 D4

C2 I 82 30 63
00 Co T 93

1l DD 8C
42 A6 02

1D 3A F1
R 95
R c6
00 30 DD

B6 D5

03 CA V 27

AF
R 95

S 64 3B FB

31 3B 24
08 33 24

09 A7 F8 09 c8

0A AC

27 52 8E F7 33 1A

38 '1F

8C 3A 11
87 3A 0OE
R Bh

33 CA R BA

/* SAVE_PARM =/

Save the text position pointer
Call End_of_record
Are we at the end of the file?
Yes, so get the terminal's vertical size
Set up a new record
Call Move_line to store another page
We exceeded memory, so restore flle
Set a flag to show that we added to file
Call Extend
Cal??late address of the last current
ne
Call Compact
Get address of the new current line

Call Start_of_ record

Get the terminal's vertical size

Do we need to hop over a dotted line?
Yes, so increment line counter

Print a LF

. Increment the llne counter

Print a LF

If we extended the file, go display
the screen. Otherwise, go display
a new page.

/* QUIT »/

Clear the screen
Modify the return address to jump to
the moni tor

Test for a P
Call Start_of_record
Call Esc_edlt

/* SET ~SCREEN »/

Test for a S :
Zero screen position ctr and scroll ctr
Call Start_of_record

Get the column number from keyboard

Is the number between 0 and 9?7

Yes, so store in the ten's counter

Init the one's counter

If past screen's edge, Inc. scroll ctr
Otherwise, Inc. screen position ctr

Increment text position pointer

Finished doing unit's movement?

Finished doing ten's movement?

Yes, so display screen

The rest of the EDIT subcommands are

Inactive if in the get_parm mode

22

FB 0B 3A 59
73 9D 73

R A3 1D

32 54

B7 8D A7

D4 R 95

50 1D 3A Lb
U 19

42 BD 02 AD
R AD |
1 A8 30 uC

07 3A 74
73 9D 73
Y sl

R 95

01 A7

0D D4 I B3
I 96 30 49

BC D4 R 88 C2 R

FF 20 3B 8D
5D
S 67 p4 | DD 88

R EA

E5 3A A0
73 9D 73
20 5D 1D
R 8B 3A 95
BB

01 3A AB
01 D4 W 26
B7

07 CA R BD
01 D4 ¥V EE 3A 29

73 9D 73

R 95

1 DD 8D

27 AB 8F A7
R 8B 32 D8

D4 R 52 30 C7

F8 20 D4 § 67
3A D2

AF 8E A7

L DD 8D

C2 I 3E

D4 | DD 89 30 E3

/* DEL_LINE
Test
Save
call
Ring

Call

*/ -
for a K character
the text position polinter

End_of_record '
Bell if at the end of the flle‘

Start_of_record

Delete the record

Call

Fix_FF

Restore the text position pointer
Go extend the next line

Call

Mon.Bell

/* INSERT_LINE w/

Test
save
Call
Call

Call
call

for a L character

the text position pointer
Compact

Start_of_record

Move_line to Insert a new record
Extend

BA The following EDIT subcommands won't
work if at the end of the record

/* TEXT #/

Is the character a letter?

Yes,

Print it
Jump to cursor_right ‘

/* ERASE_LINE */

Test
Save

sO store it in the text area

for a E character
the text position polnter

Store blanks in the rest of the line

Call

/* DEL_CHAR:

Test
. Call

‘Test_eof

w/ -
for a D character
Delete

/* INSERT_CHAR =/

Test
Call
Save
Call

for a C character

Insert

the text position pointer
Start_of_record

Print a CR
Get the screen's horizontal size

Call
call

Test_eof .
Screen_print

Blank out the rest of the line

Restore the scroll counter

Print a CR - .

|f done, go restore text position ptr

Move

cursor to original position

¥ EE
F1
F7
FA
FF

0A
(1]
12
15
1D
1E
22

9F
0D
D4
9D
20
27
2D
5C

2C
D5
2D

12

9D
9F
18
0B
4B
F8
D5

F8
Db
8C
D4
F8

23

/* INSERT =/
A7 AB Save the number of char. to iInsert
73 F8 00 5D 1D Store a marker to Indicate finished
R A3 : Call End_of_record
BC 8D AC 2C
0D FB 20 3A 1F Sea If we have room to insert chars.
87 CA NV FFf
0p 32 12 Make room to Insert characters
2C 30 0A
02 5C Restore byte where marker was placed
F8 20 5C 2B 8B 3A 15 FI1) resulting hole with blanks
0D 3A 1lE Couldn't Insert, so restore text
02 5D N5 pos. ptr. and byte where marker
: was placed
/* DELETE =%/
BB BC 8D AB AC '
A7 Al Save number of bytes to be deleted
27 87 3A 2F Set up a temporary pointer
D4 R 8C 32 3F , ~ Call Test_eof
5C 1¢ 30 34 Delete characters
20 5C 1C 21 81 3A 3F Fill the resulting hole with blanks
/* PB =/
01 B7 AC 2C Inlt the number of pages to move back
J AE Do we want to move back more than one?
3A 54 1C If 0 pages entered, set to one page
I 57 Call screen_up
00 BE D5 Zero the llne counter
. /* PF =/ :
01 B7 AC 2¢ inlt the number of pages to move up
J AE Do we want to move up more than one?
3A 67 1C I|f 0 pages entered, set to one
73 9D 73 Save the text poslition pointer
BD 88 AD Get the screen home address
29 A7 Get the screen's vertical size
R A3 Call End_of_record
FB 0C 3A 7E Do we need to skip over a dotted line?
87 32 85 Yes, so decrement temp. 1ine counter
32 8¢C Have we reached the end of the flle?
87 3A 72 _ No, so decrement the temp. line ctr
8C 3A 6F Finlshed moving all pages?
I 7€ Yes, so go restore text position pointer
D4 R 95 30 89 Catll Start_of_record
/* TOP =/
74 A6 F8 00 DS Jump back to register Init in MAIN

24

08 3A 98
01 AC
I57

05 Db X 45 33 DC

W EO
£ E9 30 CF

33 CA L A8
AC B1

3A BA 2C

W EU

N 95

00 5D 30 CF

W ED
N 89

DF B8

98 3A D2

Q BA F8 93 AA
70 A6 DS

L DD

45 GLE 54 45 52 20

49 4C 45 20

41 4D 45 20 2D BE

qQ AO
J 05

04 B7 D4 ¢ AE 33 0B

F8 P BC F8 66 AC

9¢c 73 8C 73

F8 05 D4 X 45

12 42 A7 02 B7 33 42
F8 68 AY

49 73 09 73

87 59 29 97 59

0C A7 F8 00 5C

4D 32 34

Dt § 67 30 2C

87 2D 5D

D4 | DD 8D

19 12 42 59 29 02 59
CO W D6

/* BOTTOM =/
Move the display to the end of the file
Then move the display back a page -
Call screen_up ‘

/* SAVE =/
Call Get_parm
Call Get_name
Call Mon.Save

/* LOAD =/
Ring bell if In Get_parm mode
Start loading at the end of the
current flle
Call Get_name
Call Mon,Lload
Write an end-of-flile mark in text area

/* VERIFY #/
Call Get_name
- Call Mon,Verify
Do a fixed delay

Restore R(A) to polnt to Mem_access
Jump to register init In MAIN

/* GET_NAME#/
Print "ENTER FILE NAME =>' ' |

Call Buff_init
Call Mon,Inbuff

/* PRINT =/
Call Mon.Exprk
Init default to screen
Save output vector
Call Get_parm
Restore output vector
Set up a ptr to the output vector
Save the current output vector
Store the new output vector
insert a marker to signal when done
Print the file until we hit the marker

Restore the hyte where marker was put

Print a CR
Restore the old output vector

DA
F8
F8
02
D4
8C
9C

/* GET_PARM */

32 Set screen to get_parm mode
Q 7€ 33 95 Call MAIN
73 8D 73 Save the flrst parameter
33 F6 3B 73 Finished getting all parameters?
D4 Q 81 33 93 No, so call MAIN
R A3 Call End_of_record
73 8D 753 Save the second parameter
33 F6 3B 73 Finished getting all parameters?
D4 Q 81 33 91 No, so call MAIN
73 8D 73 save the third parameter
33
12 42 AC 02 BC Put the first parameter in R(C)
F6 3B 8C Any more parameters?
12 42 AD 02 BD Yes, so put It In R(D)
F6 3B 8C Any more parameters?
42 AE 02 BE Yes, so put it in R(E)
00 DA 32 DS Set the screen to the normal mode
12 12 12 DS Restore the stack If premature exit
/* FIND_STRING */
FB 2F 32 A3 " Search for the first '/'
FF 40 C3 M 46 30 96
Set X to point to the command line
B7 Save the address of the first '/!
00 A7 Init the first parm's length ctr
A9 Put the address of the first '/' in R(9)
32 CC Are we at the end of the file?
3A AB 19 17 No, so does flirst character match?
2F F3 32 Ch4 Yes, so test for end of the first parm.
3F F3 32 Cl1 No, so test for a wild card character
F3 3A A6 No, so see iIf the text char. matches
30 Bl Yes, so see If the rest matches
AB Match found, so back up the text
28 8B 3A C6 pos. ptr. to start of match
88 CA N 69 D5 If nothing was found, print 'NOT FOUND'
/* FIND =/
98 BD 88 AD
R A3 Call End_of_record
X 96 33 D1 Call Find_string
R 95 Call Start_of_record
B8 8D A8 Found match, so set screen
Q EE Call Display_screen

/* MOVE, COPY w/

33 CA | A8 C8 Entry for Copy

FF 73 Entry for Move

OF D4 X 45 12 €3 W D6 Call Get_parm

Al Put selectlion flag in R(1).0

1 F7 Call Mon.Test ‘
52 8D F7 22 Ring bell If third parm. is less than
52 90 77 12 3B 17

second and greater than first parms,

T 15

17
1A
1E
21
26
28
2¢C
32
39
3E
"
48
LE
54
5A
62
66
6D

76
79
7F
82

87
8n
92
97
9B
A0
A9
AB
AF
B2
B5
B7
BD
c2
C7
CA
ch
D4

DB
DF
El
E9
F1
F5
F9
FF

8E
FF
81
98
4B
8B
9B
2B
DA
87
oc
57
02
81
8F
9F
8D
9D
0E
2C
02
81
1D
cv
D4

AB
A9
D4
AC
49
89
8C

91
L
97
91
09
49
D4
F8
D4
D4

FB
88
Y3
838
FB
A8
9F
uo

F5
00
7E
88
3A
52
52

21
F7
52
27
57
Fb
52
52
Fl
8C
52
57
57
32
oD

22

Al
838
1E
8F
9F

73
12
F8
2B
27
Al
8E
9E
AD
8D
F8
27

'5E

7F
5E

W 92

YE

AB

Fi
74

DA
97
00
0B
58
3B
F4
74
22
AC
00
ocC

1€

DA 33 CA
98 BD 88 AD
X 96 33 DA
19 89 B7
FB 2F 32 AY

FF 40 C3 M 46 1C 30 98B

Bl

Dl W 26

32

CA

T 96

A9

75

A7
B7

23
77
5C
3A

62
AE
BE
9D

5E
3A

3A

A8 30 7F

12

52
33

3F
1F
22
12
74
30
6D

79

A8

D4 V EE 3A Db
FB 2F 32 C7
5D 1D 30 BD
U 41

00
|

EB
FF
FF
FF
OF
F8
FF

A9

3A
20
E1l
20
3A

EQ

20

Fl
33
3B
A8
F9
B3
co

E9
F9

33 82

82

BD 12
70

Shift result into selection flag .

Find the end of the text
Add the length of (parm 2 - parm 1)
to the end of the text address

Ring the Bell if we exceeded the
memory size limit

Insert a marker to signal all done

Extend the text area

Restore the byte where marker was put

If parm 3 < parm 1 & parm 2, then
update both parms. 1 & 2

Insert a marker byte

Move the block of text to the new loc.

Restore the byte where marker was put

{f the command was Move, then erase
the old block of text

Go print the first page of the file

Call Mon.Bell

/* CHANGE =/

X 96 38 97 30 7F
A8 CO X E2 D5

Ring Bell if in Get_parm mode .
Get the screen's home address

Call Find_string

Save the address of the second '/' + 1
Determine length of the second parm,

Save the length in R(1).1

Call Delete

Skip Insert If null string

Call Extend

Get address of the second '/' + 1
Call Insert

Insert the second parm into record

Call Compact

Reset the command line ptr
Call Find_string

Call Mon.Bell

/* OUTCHAR EXTENSION =/

98 7F 00 B8

P

C5

Test for a VT character
See If we can move up a line

Yes, so move up a lline

Test for a HOM character

Yes, so move cursor to home locatlov.
Jump back to Outchar routine

club VDU board to imorease it's flexibility. The accompanying sketch
is modified from John Myszkowski's articlé in IF #18 p32 (or Best of
Ipso III-179),

MODIFICATIONRS T0 THE CLUB VDU BOARD

P Muir

The following are several modifications that I have made to the

1) The mode control chip 4508 is enabled if the address is
FCOO-FFFF, By using an 8 input gate, this can be reduced to =
range of FFF8-FFFF. This frees up almost 1K of RAM., I used

an 8 input NAND gate (4068) on address lines A3 to A9 plus the
chip enable vreviously supplying the 4508 (pin 11 of chip 10).

I mounted the chip on a small PC board elevated from the main
board in the lower right hand corner using two small bolts and
rubber washers. There is a spare inverter available on the

LOLY hex inverter. Cf course, an 8 input AND gate would simplify
the wiring. V

2) I have reversed the connections for the alphanumerics/semi-
zraphlcs and the inverueyfunctions‘on'the 6847 since in the
semigraphies-4 mode the current configuration restricted its
colour range:

GIXX XXXX Alphenumerics GCCC LLLL Semigraphics-li

3) To get the clear picture required for the high resolution
graphies, I am currently running the 1802 at 3,58 MHz which
eliminates interference from the 1802 elock and makes the addition
of filtering capacitora‘supertluauew By using a switch it is
vossible to select 3.58 MHz or a second, slower speed.

4) To further enhance the plcture, ‘I use direct video input with
luminence alone for high contrast black and white or with Iull
composite for colour. The latter is not as sharp in spite of
adding trimming pots as seen in the diagram. Non® of these are
needed 1f luminance is used. The composite video 1s supposedly
obtained by placing a diode between pine 13 and 14 of the 157é;
however, the crucial factor appears to be putting a positive volt-
arge on vin 14, Reversing this will invert the signal.

28

5) To increase the signal strength, [have added a transistor
inverter and amplifier stage on my home-brew mother board.

This was initially built kefore switching to composite video

carabilities but a single stage noninvertinrg amr wonld probebly

work as well,

I ~- currently thinking of revamping a board to set up an extermal
character zenerator for npper and lower case characters. This will
require an 8 bit counter for the row preset and horizontal sync as well
as further buffer control. If someone has one running please send a
note to Ipso.b

I 2m also developing software for a flexible graphics control
since I am interested in having plotting and eventually '3D' graphic
capabilities, If anyone is working towards this please drop me a
line at the following address.

1552 Lovelady Cr,
Mississauga, Ontario,
Canade Lywa 2

cosl

b

i

H QL NY071D
MW 86°¢ ¢
1
Hun 9S
:ummﬂw
Hee-b
31150400 :F
, ~]
é ¥5
L]
+S
23 07
+SC
b]
hOLENTE
- Sws

QI A

and

.5 || Tt

Svoirlvoi41Q9 L

€031 OQn 3DV

%0/l

30

STATUS DISPLAY
P Muirx

The following is the entry program to my monitor which displays the
micro status in the following manner:

BREAK HI IO

Q
o

53
F8
FF
12
01
13
21
00
E5
25 BB
CA EF
EO 00
34 BF
EO 21
E1 FA
20 00 |

Q
O ™

D 00
DF O1

Bdd 88

= oEH g QW W0 0O WY -0

I have only included the store routine since we 2all have different
display routines. The Break address is that at which the monitor has
inserted = breakpoint (00 00 if none present). Note that this progran
easily fits in the 1K of RAM nade available at FGOO-FFFF by revamping the
node addressing. This will be described in another article,

''he obvious advantage to the program 1s that it shows all registers
and although the program counter is different, the breakpoint address
shows 1t's previous location.

FF

FF

79

&

SEX-2
STXD-D
SHLC
ANT

STXD-DF
GHI-O0
STXD
GLO-0
STXD |
GEI-1
STXD
GLO-1
STXD
GHI-3
STXD
GLO-3
STR-2
LDI

PHI-1
LDI

PLO-1
SBX-1
GLO-F
STXD
GHI-F
STXD
GLO-E
STXD
GHI-E
STXD
G%.0-D
STXD
GHI-D
STXD
@LO-C
STXD
GHI-C
STXD
GLO-B
STXD
GHI-B
STXD
GLO-A
STXD
GHI-A
STXD
¢LO-9
STXD
GHI-9
STXD
GLO-8
STXD

FF 38 9¢&
39 73
34 87
3B 73
3¢ 97
2D 73
3B 86
3F 73

FF. 40 96
C 41 73
42 85
43 73
L4 95
45 73
L6 84
47 73
48 9n
59 73
LA 42
kB 73
4C 12
kD 73
LE 82

. LF FC

FF 50 06
51 73
52 92
55 7C
54 00
55 73
56 42
57 73
58 g2
59 73
SA 42
5B 73
5C 42
5D 73
S5E 42
5F 73

FF 60 42
61 7%
62 02
63 51
64 D3
65 €O
66 FC
&7 00

GHI-R
STXD
GLO-7
STXD
GHI-7
STXD
GlO-6
STXD
GHI-6
STXD
GLoO-5
STXD
GHI-.S
STXD
G100~ 4
STXD
GHI-,
STXD
LDA-2
STXD
LDA-2
STXD
GLO-2
ADI

STXD
GHI-2
ADCI

STXD
LDA-2
STXD
LDA-2
STXD
LDA-2
STXD
LDA-2
STXD
LDA-2
STXD
LDA-2
STXD
LDN-2
STN-1
SEP-3
LBR

31

10-3
HI-3

INITIAL POS'N.2

LO-1
EI-1
LO-0
HI-O

DF

X,P

MONITOR LOC'N

D3 AT 64 LS FOR RETURN IF
USING REG SAVE ALONE
ENTER WITH PC - RO

32

Fr

STORAGE POSITIONS FOR REGSAVS

23
00
o1
00
53
FF
F8
00
FF
FF
12
B8
01
B8
13
FE
21
FE
Go
FE
E>
25
BB
CA
EF
EO
Co

X,P
D
DF
HI-O
LO-0
HI-1
LO-1
HI-2
L0-2
HI-3
1L0-3
HI-L4
LO=1
HI-5
L0-5
HI-6
LO-6
HI-7
10-7
HI-§
L0O-8
HI-9Q
L0-9

HI-A

LOo-a
HI-B
L0-B

z
-

BF
EO
21

FA

20

0C

HI~C
10-C
HI-D
LO-D
HI-E
LO-E
HI-F
LO-F

MODE
MODE
MODE
MODE
MODE
MODE
MODE
MODE

33

Netronics Tiny Basic can run on all 1802 computers

Netronic Tiny Basic is a good interpreter for its size and price.
I think that non ELF II 1802 users have looked at this Tiny Basic
with some jealousy.

Well, no more jealousy now, for with some patches they also can
enjoy Netronics Tiny Basic.

However, you must have 4 K bytes of RAM from M 0000 - M OFFF.

Patches

A)

-

Netronics Tiny Basic includes a software UAR/T that is

connected to the inverted EF 4 flag. That means that when the
terminal is on and no key is touched the EF 4 pin of the 1802

is "1" (+ 5 V).

This is contradictory with for example the RCA evaluations board.
Instructions regarding this inputflag are:

Address Present code Mnemonic
00BD 3F BN 4
00C1 37 B 4
00D0 3F BN 4
00D3 37 B 4
00D9 37 B 4
00F2 3F BN 4
OA5D 3F BN 4
0A63 3F BN 4
0A6A 3F BN 4
O0A77 37 B 4

With this list you can invert the inputflag or use another EF-line.
For output Q is used. This is common on nearly all systems;
patches are not necessary.

Cassetteroutines

Included in Tiny Basic are the SAVE and LOAD commands. These make
use- of two subroutines in the ELF II monitor. Non ELF II owners
don't have this monitor and no such subroutines. They can't use
SAVE and LOAD. Fortunedly a .solution is possible.

Netronics Tiny Basic ends at M OB87. Here we put the subroutines.

0B80 D3 7B F8 1D 3B 90 F8 07 1D
0B90 52 FF 01 33 91 39 87 7A 02 30 91 1D D3 F8 OD 35
0BAO 9F 35 9B FF 01 33 Al 3D A7 30 9cC

Also we must not forget to modify the USER PROGRAM START address
at M 0B87.

€)

address. present code new code
011D 87 AB

The subroutines are called with the SEP register technique.
The programcounter is RC. This must be initialized with the
new starting addresses.

address present code new code
09FE FF 0B
0A01 65 88
0A2A FF 0B
0A2D BA 9D

While loading from tape data-bytes are output on the two
7-segment display's with OUT 4. You can change this is

necessary.
address present code mnemonic
0A4D 64 ouT 4

Coldstart, Warmstart

Although Netronics Tiny Basic starts at page 0l, it is easier to
have the cold start at M 0000. ¥or the warm start M 0003 would
then be suitable. Here after we tan put a simple routine to jump
to the systems monitor via a USR Call.

address . opcode comment

0000 00100 LBR 0100 cold start

0003 F83D LDI 3D delay

0005 BE PHI RE

0006 00103 LBR 0103 warm start

0009 F8CO LDI CO monitor high page
0008 BO PHI RO

000cC 93 GHI R3 = 00 ‘
000D AQ PLO RO monitor Low = 00
000E EO SEX RO

000F D0 SEP RO jump monitor

The instructions at M 0003 and M 0005 could do with some explaining.
Included in Netronics Tiny Basic is a software UAR/T. With cold start
first the Baudrate is determined (Press CR) and the timing constant
is put in R(E)1. Often however the monitor will also use R(E)1 and
the timing constant will get lost.

When you use the warm start Tiny assumes that the timing constant

in R(E)1 is available and will not again determine the Baudrate.

So we load first the delay constant in R(E)1 when using warm start.
The value here given (3D) is for 300 BD and a processorclock of

1,75 MHz.

When your systems parameters are different you should look what
Tiny has put in R(E)1l. (You could use the USR-function for this.)

D)

Cassette Loader

When you buy a Netronics Tiny Basic you get a manual and a
cassette tape. This saves you about 3000 key-strokes but when the
ELF II monitor is not at your disposal you can't read the
cassette.

A cassette loader program for ELF II format is listed below.

0000 90 B3 F8 06 A3 D3 93 B2 B7 F8 4E A2 F8 3E A7 F8
0010 00 BA AA E3 71 23 6E F8 F9 BD D7 3B 17 9D 3A 1A
0020 D7 33 20 F8 01 BD AD D7 9D 7E BD 3B 27 D7 8D F6
0030 C7 7B 00 9D 5A 8A 22 52 67 1A 30 20 1p D3 F8 OB
0040 35 40 35 3C FF 01 33 42 3D 48 30 30 00 00 00

This program is page relocatible. Put it on a page not written
over by Tiny Basic for example 0CO0O.

There are two startaddresses .for RO or R3 is programcounter.

For RO starting address is 00; for R3 starting address is 02.
Don't forget the page to completethe start address.

Loading starts at M 0000 it continues till the program on tape is
finished.

While loading the low address byte is output on the two 7-segment
display's.

address present code
38 67 (OUT 7)

When the program detects a tape error the Q-LED goes on. Because
with the Netronics tape format half a cycle is measured it is
sensitive to changes in the zero-level. When you get a lot of
error messages often it helps to invert the polarity of the tape-
signal. In extreme cases you could try experimenting with the
timing constant at M 3F. The cassette load program uses EF 2 as
input flag and is based on a processorclock of 1,75 MHz.

Enjoy Netronics Tiny Basic!

I'am working for a publishing company in Holland: "De Muiderkring".
We have 3 monthly magazines, 2 of them in the electronic field:
Elektronica ABC and Radio Bulletin, and one in the field of radio
controlled model aeroplanes, boats etc.; HB model & techniek.

I'am writing a series in Radio Bulletin on the 1802 micro-processor
and can say with some pride that the series is quite successfull.
Apart from writing I dalso developed the computerproject called
"Cosmicos". Cosmicos stands for Cosmac micro computersystem.

It is based on a small mainboard with 256 bytes RAM, 2 7-segement
display's for output and a binary input with pushbuttons and LED's.
A selection of expension boards is also available, All. of the
expension boards are based on a common bus, so when you put them iin
the connector you are ready to go.

At the moment there are 5 expansionboards

1) A byte input/output board with AD/DA converter and comparator

2) An interface board with eight 7-segment display's hex keyboard
interface and cassette interface.

36

3) A 4 XK RAM board (8 x 2114 L)
4) A 4 XK EPROM board (2 x 2716)
5) A graphic display board with CDP 1864

6) A busboard with 5 connectors.

All these boards are doublesided plated through and the connector-—
pads are goldplated. Because the boards are small the cost is

not prohibitive for hobbyistst.

A prototype of a 48 K dynamic RAM board is now running on my own
system and the looks of it are very good. Until now it has functioned
flawlessly. It is fed with 15 volt unstabilized, has its own
stabilisers and DC/DC convertor for the -~ 5V.

The simplicity of this board is due to the fact that I used the
8202 dynamic RAM controller from Intel.

I think the cost of the board will be in the range $ 30 - $ 40

and I will ask my boss if it is possible to make it also available
for Canadian and American fellow 1802 users.

When enough people are interested I am willing to write a short
article on it with schematics and board lay-out. The dynamic RAM
used is 4116,

So long 1802 friends! H.B. Stuurman
De Muiderkring b.v.
P.0. Box 10
1400 AA Bussum
Holland

ELF II SERIAL I/0 PACKAGE

- o e e - - om an o an

By: Wes Steiner
#1204 2725 Melfa Road,
Vancouver, B.C.,V6T 1N4

If many of you other Elfers out there are frustrated by the
difficulty of serial I/0 , as I was , then this program will
prove to be very helpful. I have an ELF II connected to the
Netroniecs VID and ASCII boards via RS232. For a long time I
was restrivted to the use of the two hex displayssbecause I
didn't know enough about software serial I/0 to write my own
routines to print and receive characters from the VID and |
keyboard. |
However , thanks to an article in IF #21 by D.JORENS I was
able to begin some serious programming. This article presen-
ted some short programs which performed the serial I/0. I
have adapted them to run with SCRT (ref. RCA 1800 user man-
ual p.61) for greater generallity and because this is the
technique I use for 99% of my programs.

The program occupies one page of memory with room to spare.
The following assumptions must be made before access is all-
owed to these routines.

(a) register 2 is the X register and points to a fre
memory loeation as the stack. '
(v) register 3 is the program counter.

(c) register 4,5 point to SCRT CALL and SCRT return res-
pectfully.

The program has been assembled starting at 0100h but can
be located on any page boundary with the following modifi-
cations: asmume program is assembled at xyOO then

..8l1 internal calls will be of the form D4 xy ..
« LOCATION CONTENTS

xy31 Xy
xy5D
xy22 Xy

XyAT xy

38

The following are examples of calls to the I/0 routines, It ie
assumed that R4 has the address of SCRTCL(SCRT call routine) and
R5 has the address of SCRTRT , R2 points to stack area of memory,
and X=2 and R3 is the program counter.

(1) Printing a single character:

0507 .. program code

0508 F8 41 DI cC'AY

050A BF PHI 15

050B D4 01 27 SEP 4,A(CPRINT)
OS50E more program code
OQutput:

A

(2) Printing a string of immediate characters:

0814 .. program code

0815 D4 01 1D SEP 4,A(LNEPRT)
0818 54 45 53 C'TEST', #00
081B 54 00

081D more program code

Output:
TEST_

(3) Printing an indexed string:
0234 49 4E 44 45 58 45 44 20 53 54 52 STR=C'INDEXED STR'

OE10 .. program code

OE11 D4 01 94 SEP 4,A(XPRINT)
OE14:02 34 OB A(STR),L(STR)
OE17 more program code

Output:
INDEXED STR_

I keep this package on tape and load it in everytime I begin
writing a new ro§ram, I usually use OOFF for the hottom of the
stack, 0100 - O1FF for the I/0 routines and my main program
begins at 0200h,

Happy Elfing !!

0100
0100
0100
0100
0100
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109
0104
010B
010C
010D
O10E
0110
0110
0110
0110
0111

0112
0113
0114
0115
0116
0117
0118
0119
0114
O11E
0113
011D
011D
011D
011D
011D
011D
011D
011D
011D
011E
O11F
0121

0124
0126

30 00

D3
96
B3
86
A3
E2
12
T2
A6
FO
B6
3010

46

BF

32 26

D4 01 27
30 1D

D5

;MANUAL.

CLLRET SEP
SCRTCL SEX
GHI

STXD

GLO

STXD

GHI
PHI
GLO
PLO
LDA
PHI
LDA
PLO
BR
;

[4

RETRET SEP

SCRTRT GHI
PHL
GLO
PLO
SEX
INC
LDXA
PLO
LDX
PHI
BR

H SCRT CALL
; THIS IS THE STANDARD CALL AND RETURN TECHNIQUES
;AS DESCRIBED ON PAGE 61 OF THE RCA 1800 USER

VIOVIOTO VIOV O oW

CLLRET

w
Q
=
=

O Y POV

RETRET

LINE PRIN

;JUMP TO SUB, P=3 X=2
sREG 2 IS STACK POINTER
; SAVE

;s RETURN

H ON
; STACK

SAVE NEW RETURN IN R6
4

.
?
.
]
3

;LOAD ADDR OF CALLEE
;INTO REG 3

:JUMP TO SUB VIA REG 3

RETURN

:SET UP R3 FOR RETURN

we B ws

;R2 IS STACK POINTER
;POP THE STACK
s SET UP R6 FOR NEXT RET

.
»
-
’
3
?

sJUMP TO CALLER VIA D3
T

THIS ROUTINE WILL PRINT THE ASCII EQUIVALENT OF

; THE BYTES PFOLLOWING THE SCRT CALL TO LNEPRT. THE
; STRING OF BYTES MUST BE TERMINATED BY A OOh.

; CALLING SEQUENCE: SEP 4,A(LNEPRT)
'ASCII STRING',#00

ILNEPRT LDA

PHI
BZ
SEP
BR

LPRRET SEP

6

15

LPRRET
4,A(CPRINT)
LNEPRT

5

;+GET CHAR TO PRINT
;SAVE IT IN REG 15
; DONE IF DBYTE=00h
; PRINT IT

;GET NEXT CHAR

; RETURN

39

40

0127
0127
0127
0127
0127
0127
0127
0127
0127
0127
0128
0129
012A
012B
012C
012D
012E
O12F
012F
012F
012F
012F
0130
0132
0133
0135
0136
0138
0139
013A
013B
013C
013D
013E
O13F
0140
0141

0142
0143
0144
0145
0147
0148
0149
014A
014B
014C
014D
014E
014F
0150
0151

01
8B
08

3B

:'\ {:

we we wo

PRINT

THIS ROUTINE WILL OUTPUT THE ASCII BYTE IN RF.1

sUSING RS23%2 SERIAL I/0. THE DELAY TIME IS SET AT
78H THE CONTENTS OF RF.1 ARE 1LOST. REGISTERS R7
AND R14 ARE SAVED ON ENTRY AND RESTORED ON EXIT.

! CALLING SEQUENCE: SEP 4,A(CPRINT)

»

CPRINT GHI
STXD
GLO
STXD
GHI
STXD
GLO
STXD

14
14
.
7

sSAVE R7 ,R14 ON STACK

; THE FOLLOWING IS ADAPTED FROM THE ARTICLE IN

;IPSO FACTO #21

’
RESET
LDI
PHI
LDI
PLO
LDI
PLO
SET
SEP

PRTO10 GHI
SHRC
PHI
LSDF
SET
SKP
RESET
SEP
DEC
GLO
BNZ
RESET
SEP
SEP
INC
LDXA
PLO
LDXA
PRI
LDXA
PLO

LIDX..

Q
YA(DELAY)

14
<A(DEILAY)
14

#08

15

Q

14

15

15

- TGIE S

T010

~ N N =Oga e D
>

'ELF II SERIAL I/0 BY D.J.JORENS'

R14 POINTS TO DELAY
:DELAY IS CALLED BY A
;SEP 14.

;BIT COUNTER

;s POP THE STACK

0152
0153
0154
0154
0154
0154
0154
0154
0154
0154
0154
0154
0155
0156
0157
0158
0159
015A
015B
015C
015E
O15F
0161
0162
0164
0165
0167
0168
016A
0168
016E
016F
0171
0172
0174
0176
0178
0179
017A
017B
017C
017D
O17TF
0180
o182
0183
0185
0187
0189

BE
D5

71
T2
BT

AE
BE

41

PHI 14
SE? 5 sRETURN

RECEIVE

“e wa we

THIS ROUTINE WILL WAIT FOR A KEY TO BE PRESSED
{ON THE KEYBOARD. THE ASCII CODE WILL BE PUT IN
+RF.1. REGISTERS R7 AND R14 ARE SAVED AND RESTORED.
: CALLING SEQUENCE: SEP 4,A(CRECVE)

ORECVE GHI 14

STXD

GLO 14

STXD

GHI 7

STXD

GLO T

STXD

IDI YA(DELAY)

PHI 14

LDI <A(DELAY)

PLO 14

IDI #00

PHI 15

LDI #08

PLO 15
RCV)1) BE4 RCVO10 sWAIT FOR KEY PRESS

LDI #3C

INC 14,INC 14

SEP 14

BN4 RCVO10
RCV020 SEP 14

ADI #00

B4 RCVO30

8MI #00
RCV030 GHI 15

SHRC

PHI 15

DEC 15

GLO 15

BNZ RCV020

SEP 14

INC 2,LDXA

PLO 7

LDXA ,PHI 7

LDXA ,PLO 14
LDX yPHI 14
SEP 5 ; RETURN

42

018A
018A
018A
018A
018A
018A
018A
018A
018B
018D
018E
018F
0190
0192
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194
0194
0195
0196
0198
019A
0194
0196
O19E
01A0
0140
O01A1
01A3
O1A%
01A6
01A9
01AB
O1AB
O1AC
O1AE
01BO
01B2

D3
F8
AT
27
87
3A
30

8

8E
8A

13
73

B7
AT
A8

AB

BPF
01
AO

AT
B7
A8

27

MEMORY USED :

'DELO10 DEC 7

DELAY

;THIS ROUTINE PERFORMS THE TIME DELAY FOR THE 300
;BAUD VID TERMINAL, THE TIME BYTE IS 78H AT 018CH
;DELAY IS CALLED VIA SEP 14 FROM CPRINT AND CRECVE.

9

DELEXT SEP 3

DELAY LDI #78 ;LOAD THE TIME BIT
PLO 7 ; INTO R7.0

; COUNT DOWN

GLO 7 H

BNZ DELO10

BR DELEXT

; XPRINT
;
H

SRETURN VIA SEP 3

; THIS ROUTINE WILL PRINT A STRING OF ASCII ENCOD-
;ED BYTES AT A SPECIFIED ADDRESS IN MEMORY.THE TWO
; PARAMETERS ARE 2 BYTES FOR THE ADDRESS AND 1 BYTE
'FOR THE LENGER OF THE STRIRNG.

-CALLING SEQUENCE: SEP 4z§(§PR§§T (STRING)
TRING) ,

;SAVE R8.0,RT7

’
XPRINT GLO 8
STXD
GHI 7,STXD
GLO 7,STXD
sT,OAD PARMETERS INTO R7 AMD R8.0
IDA 6,PHI 7
IDA 6,PLO T
LDA 6,PL0 8
s PRINT THE CHARS UNTIL R8.0=0
XPRO10 GLO &
BZ XPRO20
DEC 8
IDA 17,PHI 15 sTLOAD CHAR AND SAVE FOR
SEP 4,A(CPRINT) ;OUTPUT BY CPRINT
BR XPRO10
sNOW RESTORE REGISTERS AND RETURN
XPRO20 %%c 2 sPOP THE STACK
XA

s PLO 7
LDXA ,PHI 7
LDX y PLO 8
SEP 5

179 BYTES AT 0100 TO 01B2

43

) Ken Mantei, Chemistry

. Cal State College
San Bernardino, CA 92407

EPROM PROGRAMMING WITH AN 1802

The cost of a commercial EPROM programmer is high compared with parts costs. Consequently,

many experimenters and occasional users may prefer to build their own.1’2’6 Here is a

method originally implemented on a Netromics Elk II 1802 system.3 It is applicable to any
1802 system that includes RCAs 1853 N-line decoder chip, has functional high address lines,

and has some room to add two or three more ICs.

Since most 1802 systems are single voltage, the 2758 (IK bytes), 2716 (2K), and 2732 (4K)
5V EPROM family is a natural choice. 435 Each has 24 pins. 20 of these are data, address,
and supply voltage which are connected identically throughout the family. Only pins 18-21

vary in function. See Fig. 1.

The key to this programming circuit is the triggering of a 74123 (or similar) monostable
’nultivibrator by an 1802 output instruction to program each byte. A 64 instruction sets
the address lines, puts the byte on the data lines, and imitiates one flip-flop cycle of
the 74123, The'ﬁi output of the 74123 "one-shot" puts the 1802 into a 50 msec WAIT state
freezing the address and data lines. Q1 orglﬁ,(depending on the EPROM) also provides the

programming pulse. Fig. 2 shows how a 2716 is coanected for programming.

SOFTWARE

Data to be EPROMmed must be loaded into RAM of the 1802 systems in a location such that as
a date byte is output by an 1802 instruction, the address lines connected to the EPROM will
put the byte in the proper location. For example, to completely program a 2716 that will
be used at EOOO-E7FF that data could be loaded into RAM at 0800-0FFF or 1000-17FF, etc.

The programming software is only 33 bytes long. It is keyed in by hand at 0000 so that it
executes as soon as the 1802 is put in the RUN mode. See Listing 1. A 64 instruction
outputs bytes to a hex LED display on the most systems - change this to 62, 63 or whatever

your system uses for display.

44

HARDWARE

24- and 16-pin wire-wrap sockets should be installed on a kluge board tied into the 1802
system bus. Though not required for EPROM programming, a chip-select signal is needed to
read the programmed EPROM. One or two sockets for this might also be installed now. See
Fig. 3 for sample CS circuits. Wire on all permanent circuitry shown in Figs 1 and 2. The
WAIT signal shown ties into pin 2 of the 1802 regardless of how this pin is labled on your
system (it is called LOAD on the E1f II). The 164 line must come from an 1853 N-line
Decoder. Attempts to trigger the 74123 with individual N-lines or N-lines ANDed with TPB
caused the WAIT to begin before or after the address lines were all valid. Add an 1853 if

your system does not have one.

Knowing that the 1802 WAITS 50 msec for each byte programmed can be used to trim the RC
network of the 74123 one-shot. Load in some sample data to be programmed. Key in the
programming program. Without applying 25V, time a dry run until the LED output stops
changing. It should take about 61 seconds per K bytes to data. One or two 1M resistors
added in parallel with the 68K will probably be needed to adjust the RC network. .

A 24V programming power supply, as shown in Fig. 4, is a close enough approximation to the
25V specified. 1Its current is limited to about 25 ma at 24V, a 10 ma margin above the

currect actually drawn during programming.

Because this author programs infrequently using different EPROMs, and Because jumper wires
with clips at each end are less expensive and more versitile than switches this addittedly
messy approach will be described for connections to the pins 18-21 of the EPROM programming
socket. After correct programming of the EPROM has been verified, these pins may be more

permanently wired,

v
'PROCEDURE

Load into RAM the data to be EPROMmed (probably from cassette). The starting address

1.

must be chosed as mentioned above so the address lines will guide the data into the

proper location in EPROM.

Customize the programming program, Listing 1, by inserting the starting address of the

date in RAM and the number of bytes to be programmed. Key this in at address 0000.

Jumper pin 1 of the 74123 to ground.

Jumper pins 18-21 as shown in the Table to program the particular EPROM used,

connecting the 25V supply last.

Flip the RUN switch of the 1802 system on and watch the bytes displayed as they are

programmed. Flip off when programming is completed.

Disconnect the 25V jumper first, then the rest of the jumpers.

Jumper pins 18-21 as shown in the Table to read the particular EPROM used. Verify
that all bytes were correctly programmed. I have never experienced failure to a
program a few bits but have heard that occasionally it happens, requiring that the

programming procedure is repeated.

A WARNING ABOUT ERASING

Do not try to read an EPROM while erasing it.

gets exceedingly hot and is ruined. This point is not mentioned elsewhere but personal

experience has proven it.

for erasure.

If it is activated under strong UV light, it

Pull the EPROM out of its socket and set it into conductive foam

46

ADDRESS BYTES COMMENTS

0000

0007

0000

0013

0017

' 0018

001lF

F8 B2F8 A2E2 Point registor Z to start of data
L 4
to be EPROMmed. .
F8 B7F8 A7 Load registor 7 with the number
(in hexidecimal) of bytes to be
EPROMmed.
F8 02 B9 F8 72 A9 Provides 10 mses rest between

programming pulses when using.
29 99 3A 13 1.79 MHZ clock.

64 Qutput instruction to triggers

one-shot and display bytes.

27 97 3A 00 87 3A 0D Decrement number of bytes to

program out loop until finished

30 1F STOP .

Listing 1 Programming Program

EPROM References

"The 'E1l Cheapo' EPROM Programmer' Kilobaud (March 1979) p. 46.

1802 EPROM Programming' Kilobaud Microcomputing (March 1980) p. 146.

"Expanding the E1f II" Pop. Elec. (March 1978) p. 62.

2716 Spec Sheets by Intel and by Texas Instruments.

"E-PROM Doubles Bit Density Without Adding a Pin" Electronics (August 16, 1979)

p. 126, Note: The article correctly states that 2716s and 2732s require
different polarity for the programming pulses, but has the .

active high/active low information backwards.

“EPROMS and troubleshooting" Kilobaud (sept. 1980) p. 78.

Fig 1 47
. A7 1 24] +5V Supply
Al 2 231 Ag Common Connections for 2758,
* 3
Ag 22 Ag 2716, 2732 EPROM Family
"I' A4 4 21|
A3 5 20
A2 6 19
Al 7 18
Ao 8 17 D7
D1 10 15 .D5
02 11 14 D4
GND {12 13 D3
aAll commbn‘ééhhections as in Fig 1 |
16 __{+5v 2716
La02 164 Enz)f 2 s 68K 19 Hé— Ao
WAIT T, | 4 -
Qys - m -
System d iR .3 14 ._:T‘ 20 +5v
‘ 1K] B | L Q, Pgm -
13 prercncmccmcn- 18 21 - p==-+25V
 ,Gawnls)i J‘
VUMD) 0.1 nf
74123 -
Fig 2
Connections To Program a 2716. Dashed lines indicate temporary
jumpers. These are replaced by more germanent connections to
TS (18), MK (20), and +5V (21) after programming.
A1s
\ Bis
14 A
147
A13 oicf
A13__
A2

Rton Pemn
12

A1 —>o—
(a)

Fig3

(b)

(a)

(b)

Chip Select Circuit for 2716 addressed at EOQQOQO-E7FF

using a 4049 and a 4073,

2732 addressed at FOOO-FFFF using a 4012.

48

390

24V Rey.
¥20V & 7828 f—avvwn] (| 1]}] ———no
(4) 9V transistor
y l batteries
Y
Fig 5. Programming Power Supply
To Program To Read
pin 2758 2716 2732 pin 2758 2716 2732
* *
21 +25v +25v All 21 fEY ffv A,
26 | +5v +5V +25V* 20 MR MR MR
19 GND** Am Al a 19 GND#** A.l o A‘l a
18 Q1 Ql Q‘l 18 cs cs cs

Tables showing how jumpers are connected to program
and read different EPROMs.

* Jumper this pin to ground through a 0.1 mf capacitor
before connecting the 25V supply to sutpress possible
transients,

** Some 2758s may require +5V instead.4

