Ipso Facto

ISSUE 28
MARCH 1982
A PUBLICATION OF THE ASSOCIATION OF THE COMPUTER-CHIP EXPERIMENTERS (ACE) 1981
Executive Corner 2
Editor's Corner 3
New Product Announcements 3
Members Corner 5
Errata 6
From Tony Hill's Notebook 7
An EPROM Programmer for single $+5 v$ Supply EPROMS 10
MODS to Netronics Full Basic Part II 13
64k Dynamic Board 14
Tiny Pilot Terminal Tester 16
Kaleidoscope and Life Programs 18
Telephone Dialling Program 20
New Mnemonics for the Netronics Assembler 23
Full Basic Number Crunch Sans Basic 26
Selectric Typewriter Tools 30
Another Tape Controller 33
An Interface for the Epson MX-80 Printer 34
Quest Dynamic Board Fix 35
OHM's Law 36
1802 Quickies 37
Hex Keyboard for the ELF (PART II) 38
Monitor Survey 40

President:	John Norris	416-239-8567	Vice-President:	Ken Bevis	416-277-2495
Treasurer:	Mike Franklin	416-878-0740	Secretary:	Tony Hill	416-523-7368
Directors:	Bernie Murphy Fred Pluthero	416-845-1630 416-389-4070			
Newsletter:			Membership:	Bob Silcox Earle Laycock	416-681-284B
Production					
Manager:	Mike Franklin	416-878-0740	Program Convener:	Bernie Murphy	
	Fred Feaver			Bert Dekat	
	Steve Carter				
	Bob Siddall		Tutorial/Seminars:	Ken Bevis	
	Tony Hill			Fred Feaver	
Advertizing:	Fred Pluthero	416-389-4070	Draughtsman:	John Myszkowski	
Publication:	Dennis Mildon				
Hardware \&	Ken Bevis	416-277-2495	Software:	Wayne Bowdish	416-388-7116
R. and D.	Don McKenzie				
	Fred Pluthero Dave Belgrave		Product Mailing:	Ed Lestie	416-528-3222

CLUB MAILING ADDRESS:

A.C.E.
c/o Bernie Murphy
102 McCraney Street East
Oakville, Ontario
Canada
L6H 1 H6
Phone: 416-845-1630

CLUB MEETINGS:

Meetings are held on the second Tuesday of each Month, September through June at 7:30 in Room B123, Sheridan College, 1430 Trafalgar Road, Oakville, Ontario. A one hour tutorial proceeds each meeting. The college is located approximately 1.0 km north of the QEW, on the west side. All members and interested visitors are welcome.

ARTICLE SUBMISSIONS:

The majority of the content of Ipso Facto is voluntarily submitted by club members. While we assume no responsibility for errors nor for infringement upon copyright, the Editorial staff verify article content as much as possible. We can always use articles, both hardware and software, of any level or type relating directly to the 1802 or to micro computer components, periferals, products, etc. Please specify the equipment or support software upon which the article content applies. Articles which are typed are prefered, and usually printed first, while handwritten articles require some work. Please, please send original, not photocopy material. We will return photocopies of original material if requested. Photocopies usually will not reproduce clearly.

ADVERTISING POLICY

ACE will accept advertising for commercial products for publication in Ipso Facto at the rate of $\$ 25$ per quarter page per issue with the advertiser submitting camera-ready copy. All advertisements must be pre-paid.

PUBLICATION POLICY

The newsletter staff assume no responsibility for article errors nor for infringement upon copyright. The content of all articles will be verified, as much as possible and limitations listed (ie Netronics Basic only, Quest Monitor required, requires 16 K at $0000-3 F F F$ etc.). The newsletter staff will attempt to publish Ipso Facto by the first week of: Issue $25-0 \mathrm{ct} 81,26$ - Dec 81,27 - Feb 82, 28 - Apr 82, 29 - Jun B2, and 30 - Aug 82. Delays may be incurred as a result of loss of staff, postal disruptions, lack of articles, etc. We apologize for such inconvenience, however they are generally caused by factors beyond the control of the club.

MEMBERSHIP POLICY

A membership is contracted on the basis of a club year - September through the following August. Each member is entitled to, among other privileges of membership, all 6 issues of Ipso Facto published during the club year.

EDITOR'S CORNER

ACE Convertion

ACE proposes to host a weekend seminar/convention in early August this year, tentatively at a Hamilton location. The club has been successful in lining up two commercial 1802 users as speakers and hope to add RCA and several other "applications" users. Plan to set aside the first weekend in August. Hamilton is an hour drive from Buffalo, and within reach of most of our members. We are attempting to arrange low cost accommodation.

New ACE Products - Dynamic Memory
At last, the 64 k dynamic board is here, in stock. For less than $\$ 125.00$, you can add 64 k of 4116 dynamic memory to your ACE buss. The 6×9.5 inch board (standard ACE) is all CMOS, with gold edge conmectors and extensive documentation. The board produces $4 k$ block shadow decoding to disable RAM for EPROM, ROM or memory map space. Or board provision for adaptation to the new $64 \mathrm{k} X 1$ chips. CHEAP MEMORY IS HERE!

The board schematic is reproduced on page 4.
Proposed ACE Micro Board
The new ACE $1802 / 6$ micro board is well advanced and should be available by the summer.

New Backplane and I/O Board
The club has produced version 2 of its 44 pin backplane and added cassette, parallel, serial (RS232C and TTL) input/output devices and a clock crystal to the board, doing away with the cassette relay controller and 16 K block decoder. The $7^{\prime \prime} \times 13^{\prime \prime}$ board is now in stock and available for $\$ 40.00$. A separate $I / 0$ section is nearing completion which may be added to the existing backplane to convert it to the same features. This board will be available for $\$ 20.00$ in April, 1982.

Netronics Adapter Board Bugs

A design error has been discovered on the NAB board. When LOAD and CLEAR were brought from the NETRONICS buss to the ACE buss, the connecting traces were reversed. Netronics pin 10 should connect to ACE pin 3 and Netronics pin 14 should connect to ACE 4. The correction is most easily be made near the angled Netronics edge connector, utilizing the plate through holes.

The RS232C-Db25 connector is not standard pin out, and care should be exercised connecting terminal and modem devices. Check the device connector pin out and adjust it on the NAB accordingly.

MEMBERS CORNER

FOR SALE

M. Sachse, 36 Jean Dr., N. Attleboro, MA. 02760

- complete ELFII-G.B., 1X4K RAM. Video Display, Cherry Keyboard, Video 100 (10 mHZ) Monitor, 32 K dynamic (wire wrapped) - $\$ 330.00$ U.S.
D. Schuler, 3032 Avon Rd., Bethlehem, PA. 18017, 215-865-1188
- 2 - 8086 CPU $0 \$ 45$ or trade for 32 - 2114LA's.
A. Boisvent, 4830 des Pervenches, Orsainville, P.Q. G1G 1R7
- used $8^{\prime \prime}$ disk $0 \$ 3.00$, several 5 ft . by 20 wire ribbon cable $@ \$ 2.00$.
J. Briante, 18 Allison P1., Guelph, Ont. NIH 6X7, 519-578-5369
- complete ELF II - G.B., $2 \times 4 \mathrm{~K}$ RAM, cassette controller, documentation, working \$250.00 CDN.
- 1 - COPE 1030 Selectric Terminal - RS-232 - IBM Correspondence APL code, manuals - $\$ 400.00$ CDN.
T. Crawford, 50 Brentwood Dr., Stoney Creek, Ont. L8G 2W8, 416-662-3603
- Intel single board computer SBC $80 / 10 \mathrm{~A}$ including documentation $\$ 300.00$.
- ASR 33 teletype (incl. paper tape reader and punch) RS-232 documentation - $\$ 300.00$.
M. Olah, 324 Grant Avenue, Cuyahoga Falls, Ohio 44221, 216-928-4160
- complete ELF II, G.B., $3 \times 4 \mathrm{~K}$ RAM, 2X16k RAM, NOM board, terminal with Sony monitor - consider offers - need cash for tuition!!!
- Quest Super ELF, super expansion board, 4K ROM, SSM Video, keyboard \$175.00 U.S.
D. Thornton, 1403 Mormac Rd., Richmond, VA. 23229
- 2 - 2708, 1-C8702A-4, 1-C1702A-2, 1-MM5736N, 1-MK5012P, 1-CT5005, 1MM5311N, l-AY-5-1013A - FREE!!! for postage costs.
- 1 - paper tape punch - not much info. - from check writer machine write for details.
F. Shinyei, 10545129 St., Edmonton, Alta. T5N 1W9
- RCA boards - VP 595 - \$25.00 - VP550-\$45.00, VP576-\$17.00 - VP700-\$35.00 - VP710-\$7.50
- MM57109 math board (home made) - $\$ 35.00$.
- Cybernex 6 XY16 video board - $\$ 110.00$.
- Bell 103 modem - $\$ 25.00$
- SWTR 64×16, K5B keyboard - $\$ 30.00$
- the following corrections have been reported for recently published articles. My thanks to the contributors for the corrections, and apologies to the authors for errors created by the Editoral staff.

1802 Serial I/O Board (I.F. \#25, p. 28)

- by Tom Crawford
p28 - as published, page 34 should follow paragraph 4 on page 28.
p36 - table 1-600 baud - count value (LO) should be BA not BR
p36 - last line should be (\#FF00 to FFOF)
p41 - PIN 21 of 1802 Edge commentor is I/0 select
PIN 43 of 1802 Edge commentor is $-5 V$ regulated
p43 - serial I/O edge connector (top of page refer to page 41 for pin numbers.

U9 - $\overline{C S}$ is pin 21 not 1, 2; WR is PIN 23
U13 - gate out of U1O - pin are 12, 11 and 13.

Kaleidoscope (I.F. \#26, p. 14)

- D. Ruske, Callauauga Rd., Waupun Wi., USA, 53963

There were a few typos in the screen layout data: 0247 should be OE, 024A should be EE, O2BA should be 8 D , an 02 BB should be 75. Also, if your using an ELF II change 0040 from 61 to 69. Thanks to V. Cayer for an excellent program.

Kingdom (I.F. \#25, p. 18)

- L. A. Hart

Mr. Hart found a couple of errors in his Kingdom program as published in Ipso Facto \#25

line	should be;
500	
1310	$G=G+L / 4 /\left(L^{*} 9 / P+P * 9 / L\right) * M *(R N D(\emptyset, 4)-Z)-(A+P+S) / 19 * F$
	$1 F R<1 P R^{\prime \prime} ?^{\prime \prime} ;$

ANOTHER BOOT CIRCUIT - IF 21
Circuit one contains one error. The line going to pin 15 of IC B should go to pin 14. With that change the circuit works fine.

The boot circuit shown in figure two also contains one error. It doesn't work! Furthermore, it can't be made to work (or at least not easily). My apologies to Mike Franklin and anyone else who wasted their time on it. The person responsible for it has been sacked.

From Tony Hill's Note Book
- by Tony Hill

NOTES ON NIES MONITOR - VERSION 2

The following are same random notes on Steve Nies monitor, collected after some months of use. They may be of some help to ACE members using his software. Most of them were only possible because I have a dissassembled listing (mostly due to the efforts of Wayne Bowdish) and used it to explain the funny things that happened at times.

Note 1 - Keyboard Input
Since bringing up "The Monitor" I have noticed how poor my keyboard is. Or so I thought. It kept missing characters that I was sure I had typed. The reason? Well it seems that the input routine in "The Monitor" tests the keyboard flag for input and then issues an INP command no matter what the status of the flag. This had the effect of resetting my keyboard, a most nasty habit if you are in the middle of a keystroke. Change the byte at F 61 from 64 to 65 to fix this problem.

Note 2 - Using the ACE VDU
While "The Monitor" is written to work with a 6847 VDU type display, some changes are necessary to make it work with the ACE VDU board. The required changes set the ACE board into alpha-numeric mode, and mask off bit 6 of displayed characters to eliminate block graphic characters. The changes are really patches to the existing software, and are implemented at the price of losing the bell routine.

The byte at I AA is the page address of the VDU control register.
Note 3 - Adding Disk Commands
I have a listing of a $1 / 2 \mathrm{~K}$ program to allow the ACE disk board to be run from "The Monitor". When run ,it automatically patches a set of new commands into the command table, allowing such functions as multiple sector reads and writes, seek to track, set sector number, read controller status and master reset drive. Anyone with an ACE controller board and "The Monitor" (or anyone otherwise interested) should drop me a line for a copy.

At a meeting of the unofficial ACE standards group on Dec. 29, 1981, a standard format for ACE disks was documented. This standard was set to ensure that work now being done by various people on disk operating systems would result in compatable disks. The standard format should apply to most disks, either floppy (5-1/4" or $8^{\prime \prime}$) or hard.

In establishing this standard, ACE realizes that it will most likely not match any 1802 disk operating system now in use. However, it is necessary to pick something as a standard and so every effort has been made to establish a good general one. The ACE standard is designed to allow room for growth as disk operating systems become more complex, while being usable by the most simple disk operating system.

Initial use of this format will probably be mainly for $8^{\prime \prime}$ drives, so a few words about physical standards for 8 " floppy disks are necessary. In general, other disks will have different physical formats but the general ACE structure for their layout should apply. ACE has elected to adopt the "standard" IBM soft sector format for their 8" drives. IBM format for single density floppy disks specifies 77 tracks divided up into 26 sectors each. Each sector consists of 128 data bytes plus assorted header information.

In the ACE standard, Track 0 will be used for "boot up" code, bad sector lock-out tables and reserved space for future expansions. Sectors 01 to 08 inclusive are available for user "boot up" code, which will either be part of the operating system or user supplied. The rest of the track is reserved for sector lock out tables if required. Track 1 will contain the disk index of files, formatted as per the ACE standard. The rest of the tracks will contain sequential files, with each file using as many sectors and tracks as necessary. No assumption of file format is made, beyond the fact that the file is continuous over sequential sectors and tracks.

The index of files, more commonly called the directory, consists of a contigious set of 32 byte entries, one per disk file. Each entry contains all information necessary to find, load and if possible run that file as well as various pieces of "book keeping" data. Index entry format is summarized in table l. Simple systems may not maintain all fields in the entry, but by standardizing the format, any systems should be able to read any other system's index. A suggested minimum set of entries to be maintained is the filename, load address, relative block number and number of sectors used entries.

There is no correspondance required between the order of entries in the directory and the order of files on the disk. However, the first index entry should be a record pointing to the index, which is a continous file itself. This standard for the first entry has been adopted to allow the index to be treated as a file by a disk operating system. Treating the index as a file simplifies the job of index display and data manipulation.

TABLE ONE - INDEX RECORD LAYOUT

BYTE	MEANING	BYTE	MEANING
OO	Record Type	10,11	LOad Address
$01-08$	File Name	12,13	Run Address
$09-0 B$	Extension	$14-16$	Relative Sector Number
$0 C$	Year/Month	$17-19$	Sectors Allocated
OD	Day	lA-1C	Sectors Used
OE	Version	Spare (Reserved)	
OF	Spare	Relative Sector Number	
Of Extension			

NOTES

1) File name and extension are usually in ASCII. All other entries are in Hex.
2) Record type is 00 for deleted entries, 01 for standard file records, 02 for extension records and FF for the end-of-directory record.
3) Year/Month is stored as year in the high nibble and month in the low.
4) Relative block number is the number of sectors per track times the track number plus the required sector on that track.
5) Extension records are included for future use if larger directory records are required. Their format is not defined at this time, only the the possibility that they may exist.
6) Year, month and day refer to the date the file was most recently accessed. However the first directory entry will have the creation date of the directory in this space.
7) The spare reserved byte ($O F$) will be used to designate the operating system the disk was created by. Designation codes will be assigned by ACE in a manner yet to be determined.
8) Relative sector numbers are equal to the physical sector number added to the product of the track number and the number of sectors per track.

FORTH

At the request of the editor, I am hereby submitting a status report on the use of FORTH for club 1802 systems. I apologize in advance for anybody whose name I forget to credit (or blame).

First of all, the club executive now has a working FORTH system running and more Toronto/Hamilton area members are in the process of bringing it up. If you don't know what FORTH is, this is not the place for me to tell you about it. I would suggest that you beg borrow or steal a copy of the August 1980 issue of BYTE as a good starting point.

Anyways, a little about the history of the current FORTH version is in order. The copy we brought up (after months of work) was sent to us by Ken Mantei of Cal State College in San Bernardino. From what 1 can tell from his notes, it is the same as the version distributed as the fig-FORTH standard (although I hope that version has the 3STACK code done correctly). The majority of the original programming work was done originally by Gary Bradshaw, with later refinements by Gordon Fleming, Richard Cox and Ken Mantei.

The current status of FORTH as a club project is that we are not sure how to distribute it. Ken Mantei has written a good set of installation instructions, and copies of the source code are available from the FORTH interest group. Also available and recommended is the fig-FORTH installation guide. However, as the many months I spent working on bringing up our version have shown, typing in a 6 K program by hand is no thrill. So we need a distribution media of some type, either floppy , cassette or three 2 K EPROMs. If you are interested, drop me a line stating your preference for media type, and maybe bs next issue we will have ordering information.

An EPROM Programmer for Single $+5 v$ Supply EPROMS

- by M. Franklin

In Ipso Facto 21, I presented modification to the Netronics full Math Package board to relocate the Eproms to addresses other than 0000H. For the past 3 months, I have been utilizing the board to house by Monitor and DOS at COOO-DFFF. The board has been further modified to burn single +5 v supply Eproms (2716's). The following article, schematic and program form the bases for this capability. While the circuits were implimented upon the former Math Board, the circuit and program could be implemented by other means.

Theory of Operation

Single $+5 v$ eproms require $a+5 v$ pulse to be supplied to pin 18 for 50 ms . when valid address and data are available on the appropriate busses. Pin 21 , the program pin, is held to $+5 v$ during the programming operation, and dropped to $+5 v$ for read operations.

Addresses are supplied sequentally from a 404011 bit counter, which is incremented by a port enable pulse following each data byte transfer. The page count is shown by the page count led, which is on for odd number pages.

Data is supplied to this EPROM from an 1852 port which is enabled by OUT PORT 4 enable pulse, which also simultaneoulsy displays the data on the ELF II system data HEX LEDS. Once the data is available to the EPROM, the service request pin ($\overline{S R}$) goes HI and trips the 4538 timer to generate a 51 ms pulse on the EPROM. The duration of the time pulse is determined by the R-C network on pin $14 / 15$ and is quite critical, since manufacturers specified a 50 ms . pulse.

Use precision components, a $5.11 \mathrm{Kohm}, 1 \%$ resistor and a 10 mf capacitor will produce 51.1 ms . pulse.

Use a good scope to check the length of the pulse and proper sequencing of the two port enable pulses.

Operation

The program first of all determines the length and location of the source to be transfered to the EPROM. If the source is not located at the beginning of the EPROM (000 H) the program increments the counter and decrements the address count to 000 H to correctly position the address count for the transfer. In order to achieve reliable results, it is good practice to locate the source data at this correct relative address to a 4 K boundry (ie. to burn C 478 - C 500 H locate at $1478-1500 \mathrm{H}$ and start the program count at 1000 H.)

The appropriate values are loaded into R6 and R7 and the EPROM size or program length into R4. Switch on the 25 V switch, (S1) which also resets the counter and lights the 25 V on LED. Hit the run switch and watch the HEX LEDS display the data. Run time for 2 K is 135 seconds with the values specified.

EPROM PROGRAMER - 2716

0000	F808	LDI \#08	INITIALIZE
0002	B4	PHI R4	-
0003	F800	LDI \#00	R4 $=$ Program Burn Length +1
0005	A4	PLO R4	
0006	F800	LDI \#00	R6 = Source of Data Address
0008	B6	PHI R6	Note $=$ Locate in 2K block in
0009	F800	LDI \#00	correct relative location
000B	A6	PLO R6	
000 C	96	GHI R6	$\mathrm{R7}=0000 \mathrm{H}-$ Offset of Source Relative
000D	FAOF	ANI \#OF	to beginning of Eprom at 0000.
000F	B7	PHI R7	
0010	86	GLO R6	
0011	A7	PLO R7	
0012	97	GHI R7	SET COUNTER
0013	3 A18	BNZ \#18	
0015	87	GLO R7	If R7 $\boldsymbol{\sim} 0000$
0016	321 D	BZ \#1D	DEC R7, inc counter until R7 $=0000$
0018	El	SEX RI	counter set at correct start address
0019	6A	INP P2	
001A	27	DEC R7	
001 B	3012	BR \#12	
001 D	E6	SEX R6	BURN EPROM
001 E	64	OUT P4	
001 F	F80A	LDI \#OA	Output Data via Port 4 from M(R6)
0021	B5	PHI R5	(Displayed on LEDs)
0022	F89F	LDI \#9F	
0024	A5	PLO R5	Delay 55 MS for Program Pulse.
0025	25	DEC R5	Count in R5
0026	95	GHI R5	
0027	3 A25	BNZ \#25	DEC count, Test if R4 $=0000$
0029	24	DEC R4	if so, quit.
002A	94	GHI R4	if not, inc. counter
002B	3A30	BNZ \#30	loop till done.
002D	84	GLO R4	
002E	3234	BZ \#34	
0030	El	SEX R1	
0031	6A	INP P2	
0032	301D	BR \#1D	
0034	7B	SEQ	'Q' on, quit!
0035	3034	BR \#34	
DONE!			Run Time - $135 \mathrm{sec} .(2 \mathrm{~K})$

Addendae

For those who do not have the ports decoded, such as on the Netronics Giant Board, the schematic includes a port decoder circuit using a 1853 as an alternative. Port assignments may be changed by altering the enable wiring and changing the appropriate program addressing.

MODS TO NETRONICS FULL BASIC PART II

- by M. Franklin, 690 Laurier Avenue, Milton, Ontario, L9T 4R5

In IPSO FACTO 17, p. 29 and Defacto III - 95, I wrote about modification to the cassette version of Netronics Full Basis Level III. While my version worked, apparently it didn't for others. I recently had the opportunity to convert an EPROM/ROM version and found the problem - the error messages were incorrect.

The following changes work on both cassette and EPROM versions. Note - you cannot EPROM the cassette version since the RAM start and cassette load addresses will be incorrect.

1. CHANGE TO 600 BAUD

M (1469) - FF 085212
M (1332) 00

NOTE: will not work with Netronics VID board which is programmed for 300 baud only.
2. Fixed line length (64 characters) and abbreviated sign on

M(147E) 1A
M(1480)F8 15 BE D7 36 F8 37(18 for 32 characters)5D E3
M(1489)65 2F D4 13 BB D4 1497 D8 2009 CO 0027
Change M (1497-AC) and $M(14 E 0-1519)$ to $C 4$

> M (151A)-4E 455452 4F 4E 494353204241534943 - "NETRONICS
> OA OD 5245414459 OA OD 00 BASIC READY"
3. SHORTENED COMMAND INPUT

- the following changes allow programmer to abbreviate command with a "." (period) i.e. PRINT becomes P.; LOAD = LO.;LIST LI.;etc.
$M(02 B 9)=4 E$
$M(01 B 7)=C 9, C 4$
$M(02 \mathrm{C} 1)=4 \mathrm{EFF} 4033 \mathrm{Cl} 1 \mathrm{E} 30 \mathrm{~B} 31 \mathrm{~A} 0 \mathrm{~A} F \mathrm{~F} 2 \mathrm{E}$
C2 03 EO
$M(03 E 0)=4 E$ FF $4033 E 02 E 1 A$

4. ADD MONITOR JUMP TO COMMAND TABLE

- with shorter commands PR is no longer needed.
- move M (02E2-03DE) to (02E3 - 03DF) - shift 1 byte.
- insert M (02E2) - 4D 4F 4E FO 00.
"MON FO OO" or appropriate address
(change M (0000) to C4 C4 C4.

5. LIST/RELIST CORRECTION

- to correct the programs problems with line numbers ending in $O D$ (13), change the routine as follows:

M (0414) - D8 5C 6B 1D 4B 5D 1D OB 5D D4 01 2B FF 013242 FF 013230

M (0428) - to C4 in EPROM version to $1 B$ in cassette version

NEW HIGH SPEED CMOS SERIES

- ref: Electronics December 1, 1981, p137-140

Several manufacturers have begun distribution of a 74 HC series of CMOS chips offering superior speed to 74 C and 4000 B Series chips, yet retaining the low power and large fan out capacity of CMOS.

From a club point of view, the introduction of CMOS octal Uini and bi directional buss buffers is welcomed (74 HC 243 and HC 245). The chips are pin for pin compatible with standard 74 series chips. Approximately 100 devices will be available from National Semiconductor Corps, Mitel and Motorola.

74HC, 74 C and 4000 B chips are input and output compatible as long as they share a common power supply.

64k Dynamic Board

- by D. Heller, V.H. Goedhartin, 3171181 VN: Amstelveen, the Netherlands

I EOUGHT MY ELIF IT ABOUT 3 YEARS AGO, AND FOR MEM. EXFANSION ONLY 4K STATIC EOARDS ARE AVAILAELE, WHICH I FIND TOO LITTLE (KAX. OF $16 K$ FLLACE FOR THE ELFF II)
ALSO, I DON'T LIKE THE EIG FOWER SUFFLY NEEDED THEREFORE!
THAT'S THE FEASON WHY I HAUE DEUELOFED A $64 K$ DYNAMIC RAM EOARD. ENCLOSED I SEND YOU THE SCHEME FOR IT.
FOR THIS FROUECT I HAUE USED INTELS FOWEFFULL 8202 DYNAMIC RAM CONTROLLER. THE: WHOLE SYSTEM WORKS WHIT EUEEY 1802 CLOKFFERUENCY, AND ONL.Y NEEDS A FOS. 15 VOLT UNSTAETLIZED FOWER.
THE MAX. CURRENT IS UNDEF THE 1 AMFEFE FOR THE WHOLE SYSTEM. (ELFF II + G4K DYN. FAM EOARD + GIANTEOAFID)
THERE ARE MANY 1802 USERS IN THE NETHERI..ANDS WHICH HAVE THIS EOARD. MY OWN ELFF II WITH DYN. RAM EOARI) IS CONTINUOUSLY FOWERED ON AND IS LOADED WITH SEUEFAL FROGFAMS IN QUEST-EASIC, AND THIS SYSTEM HAS EEEN WOFKING AEOUT 2 YEARS WITHOUT ANY FROELEMS. I HAUE MY FROTOTYFE EOARD WTRE-WRAFFED AND THIS WOFKS WELI. EUT MANY 1802 USEFSS ASKED ME FOF A FRINT, SO I HAUE DEUELOFED A F.C. EOARD. (DOUELED SIDED FLATED THFOUGH AND COLDFLATED CONNECTORFINGEFS.) THIS FRINT COMFLETLY ASSEMELED AND TESTED W:ITH 1 GK FAM IS AVAILAELE FOR THE 1802 USERS.
MOREE MEM. NEEDED? SIMPLY EUY 24×4116 'S AND FIIACE THEM IN SOCKETS ON EOARD AND YOU HAUE 64K RAM AUAILAELEE!
MEM. ON EOARD IS EANK SELECTAEILE IN ELIOCKS OF BK. IF YOU HAUE FROM'S OR EPROM'G IN YOUR SYSTEM, (NETRONICS MONITOR FROM ON GIANTEOARD) AND YOU HAVE ADDRESSDECODED MEM. ENAELE SIGNALS, SIMPLY CONNECT IT TO THE DYNAMIC FAM EOAFI) AND YOU HAUE NO EUSFROELEMS EETWEEN THE DYNAMIC FAM DATA AND FROM AND/OR EFFOM DATA. IF THERE ARE FEOPLE INTEERESTED: A F.C. EOAFD COST \$50 AND A COMFLETLY ASSEMELED AND TESTED EOARD (ALL IC'S ON SOCKED'S) WITH $16 K$ FAM INSERTED WITH MANLIAL. IS AUAILAELE FOR $\$ 250$.
THEN I HAUE ONE RUESTIUN: I LIKE TO FLAY CHESS, EUT I HAVE NEUER HEARD AEOUT FROGRAM'S FOR THIS GAME FOR 1802 MICRO'S.
AFE THERE CHESS FROGRAM'S AVAILABLE?

Tiny Pilot Terminal Tester Program

 by T．Jones，Enterprise，Alba U．S．A． 36330PILOSI． 2
EDI 1
WN1 25
「3i ERMINAL TESi
Thion many char fcrers／line？
I 8
At\＃C
\％O I：ENTEK TESi NUMBER．
I：l．SLIDING ASCII PACTERN．
I：2．VERTICAL EDGi SHADING．
T：3．HOHIZ．eDGE SHADING．
i：4．HAMMER AL IGNAENI．
T：ל．DOT MATRIX MI SSING WIRE
i：O．RANDON ASCII．
I：7．ASK 33／35 YRINT HEAD．
T：8．ASK DASH－POI TEST．
1：9．BAUDOT CHAK．SET．
I：10．ECHO INPJT LINE．
I：11．LINE FEEJ．
T：12．FOKM FEEO．
「：13．ALL IESTJ FROM 1－6．
I：
A sif Q
$x 8 w>13$
16
$\% 100$ C：$A=C$
$\% 105 \mathrm{Kab}$
C：$A=f-1$
$X: A=0$
JN： 105
I：
K：
\％ 3 C：$b=71$
J：100
\％4 C：$B=45$
J： 100
\％ $5 \quad \mathrm{C}: \mathrm{B}=41$
J． 100
\％6 C：$A=C$
\％ 106 2：95
$K: Z+32$
C：$A=A-1$
$X: A=0$
JN： 106
R：
\％7 C： $\mathrm{C}=85$
C：$S=42$
$C: A=C$
\％ 107 K J
K：S
C：$A=A-2$
$X: A=0$
JN： 107
K：
\％ 8 C：R＝30
$\mathrm{C}: ~ I=\mathrm{K}$
JY： 500
T：
「：HON MANY TES！CYLLES？
A：$\# \mathrm{~L}$
\％ $200 \mathrm{U}: 0$
$\mathrm{C}_{\mathrm{B}}=\mathrm{L}-1$
$X: L=0$
JN： 200
T：
IGENDUF TEST
T：ANOTHEK LEST？
As
may ES，Y
JY：O
E\＆
\％1 1 ：
$C: P=32$
$C: E=121$
$\% 104 \mathrm{CB}=\mathrm{C}$
$\% 103 \mathrm{Kar}$
$C: P=P+1$
$\mathrm{C}: \mathrm{N}=\mathrm{N}-1$
D（2vE？$X: P>E$
hY：
$X: N=0$
JN： 103
「：
J： 104
＊2 $\quad \mathrm{C}: ~ B=69$
CH K：14
\％125 K： 32
$\mathrm{C}: \Gamma=\mathrm{T}-1$
$X: T=0$
JN：12b
$\mathrm{C}: \mathrm{I}=\mathrm{K}$
K： 14
$\% 130 \mathrm{~K}: 63$
$C: T=T-1$
$X: \Gamma=0$
Jiv： 130
LF $\mathrm{K}: 10$
R：
\％y $T:$
I：ABCDEr GHIJ KLMNOPOHSIUVWXYL
1：－－＇ $3!8$ 8＇（）．，9014 $27: 216^{\prime \prime}$
$\mathrm{K}:$
$\% 10$ A：${ }^{\circ}$
T：SU
R：
\％\｜C：$N=0$
$\% 119$ T：\＃s
$\mathrm{C}: \mathrm{N}=\mathrm{N}+1$
$x: N=10$
JN：119
R：
\％12 C：$N=15$
T：FOHM FEED
K： 12
A112 K： 0

C： $\mathrm{N}=\mathrm{N}-1$
$X:=0$
JN： 112
R：
$\% 13 \mathrm{C}: 0=1$
$\% 115 \mathrm{U}: \mathrm{G}$
$\mathrm{C}: \mathrm{G}=\mathrm{G}+1$
$X: G>0$
$X: G>0$
$J N: 110$
R：
500 T：
I：IRY AjAIN！！

J：O
．
1 AjAIN！！

```
TERMINAL TESI
HON MAVY CHAKACTEHS/LINE?
37
ENIER IEST NUMBEK.
    1.SLIDING ASLII rAIIEENN.
    \angle.VERTICAL EUGE SHADING .
    3. HOKIZ. EDGE StADING.
    4.HAMMER ALIUNMEVT.
    2.DOI MATHIX MISJING WIRE
    0.kAND(ON ASCII.
    7.ASK 33/35 PKINI HEAD.
    8. ASM DASH-por TESI.
    9.BANDOT CHAR. SEI.
    10.ECHO INPUT LINE.
    11.LINE FEED.
    IG.FOMM FEED.
    13. ALL FESTS FKOM 1-6.
```

? 13
how mavy lest cycles?
32
!" \#5\%\& () *+, -. / $01<3456789:$; < > ? @ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]^_`abcdefg hijklmnopqrstuvwxyz \{: $\}^{\sim}$

EEcteet EEEEEEEGEE МММ МММММ ММММММММИММП̆ МММММММММММММММММММММММММММММ ММММММММММММММММММММ МММММ ММММ
$1 / 1$

 hijklmiopqrstuvwxyz (i) ${ }^{\sim}$

$1 / 1 /$
 ENU OF TESI
ANO THER TEST?
TYES
ENL ER TEST NUMBER.
37
HOY MANY TEST CYCLES?
$? 1$
$U * J \star U * U * U * U * U * J * U \star J \star U *$ EN OF TESI
ANO THER IEST?
iY
ENIER IESI NUMOER.
39
HOV MAVY IEST CYCLES?
31
ABC DEFGHI JKLMNOPORJTUVWXYZ
$-8 \quad 3!8 \quad 8 \cdot() ., 701457$

Kaleidoscope and Life Program for the 1802/1861

- by J. Munck, 20228 Clark St., Woodlands, CA., U.S.A. 91367

This program generates aleidoscopic pattern of pixels on a (one)page 186i display. The image is symmetrical about the center. The X and Y values for the plotter are generated by a pseudo-random number generator of only 12 bytes. The PNG, by Lester Hands, (from a Questdata newsletter)spews out a string of over 3200015 bit numbers that are non-repetitive.

A register, f,holds the entire number.o The register is split in half to form $日$ bits for each of the x and yocomponents. The random values are further manipulated to form:
$(x, y),(y, x),(-x, y),(y,-x),(x,-y,(-y, x),(-x,-y),(-y,-x)$. Eight sets of coordinates are then presented to the plotter(0056). There is no significance to eight sets. Any more only seemed to make the display too busy. After plotting the eight dots the PNG is aroused again and eight more pairs are generated.

The basic method of addressing the screen uses the formula: $(X+32 / 8)-(Y+16)(8)+$ Screen size + Screen offset.
This determines the byte location. The pixel(bit) location is determined from the original X coordinate using a table look-up.

The speed is fast, and a pleasing display is formed especially when the display is square. This can be done from the hex keypad, using a value of of or 07. The plot routine was adjusted to blank out existing bits when the MSB of the number in RF. $1=1$.

The display then tuinkles enough to make aither the VIP or the Studio II patterns proud.

When the input switch (EF4) is depressed all motion ceases, and when released life begins in an $48 * 30$ universe.

The program that generates life was also obtained from a Questdata article (vol $2, \# 4$). The life pgm is essentially that published by Ray Tully with two exceptions. I did not use the suggested input routine to generate the initial life patterns, but instead chose to use my random pattern as the starting point.

In addition, a frequently called sub-routine of six bytes(test,inc) (D3 , 3B 50, 1B, 30 50) was unraveled to substitute in-iine code to see if life could be speeded up some. This proved to be the case, as approximately 0.5 seconds was shaved off the 1.8 seconds.

The choice to use the random pattern resulted, of course, in an unpredictable input to life. As life evolved the symmetry was retained. One might imagine the display to be snowflakes.. starbursts, cellular division, or to the jaded purist, only an 1861 turning bits on and off.

To freeze the life forms, press the input switch. To exit life release the switch and the program will clear the screen and begin some more kaleidoscope plotting. (For this, try an input of of).

One byte, in the program, may prove to be of interest to the compulsive tweaker: (OOF5), if increased from 03 to 04 or 05 allows more neighbors, resulting in a super-nova. Execute at 0000 .

KALEIDOSCOPIC LIFE - 1861 GRAPHICS PROGRAM 1-30-82
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F\end{array}$

0000	90	B3	B4	B8	BC	F8	03	B9	F8	09	A6		F8	D4	AC	Fs
0010	E4	AD	F8	FF	A2	F8	DC	A1	F8	11	A7	F8	56	A4	Fe	7F
0020	A3	F8	01	B1	B2	BD	A5	F8	02	B5	B6	B7	BF	5 D	D3	XX
0030	XX	$x \times$														
0040	XX	80	40													
0050	10	08	04	02	01	D3	A8	FC	20	F6	F	F6	F9	F	52	㫜
0060	FC	10	FE	FE	FE	F5	AA	88	FA	07	FC	4D	AB	9F	FE	O
70	33	77	52	OA	F1	30	7 C	FB	FF	52	OA	F2	5A	30	55	EA
0080	F8	03	BA	F8	FF	AA	F8	00	73	9A	FB	01	3A	86	1A	E2
0090	69	9 F	FE	52	FE	F3	FE	8F	7E	AF	9	7E	BF	6 C	9F	F2
AO	BB	FD	00	BE	8 F	F2	AB	AA	FD	00	A	9B	D4	9 B	AA	8B
OOBO	D4	8B	AA	9E	D4	9E	AA	8 B	D4	8E	AA	9B	D4	98	AA	8E
OOCO	D4	8E	AA	9E	D4	9E	AA	8 E	D4	3F	91	37	CB	F8	00	$A B$
OODO	co	01	00	D3	3F	DD	37	D6	F8	00	A	BO	DO	88	FE	A
OOEO	32	FC	8B	FF	02	33	F3	F8	00	F6	09	7	59	7A	F8	
OOFO	AB	30	D3	8B	7D	03	3B	E7	F8	FF	30	E9	31	F8	30	E7
0100	05	FE	3 B	05	1 B	FE	38	09	1 B	07		3B	OE	1B	F	B
0110	12	1B	25	05	F6	3B	18	18	15	26	06	F6	3B	$1 F$	1 B	
0120	27	07	F6	3B	26	1B	17	06	FE	3B	$2 C$	7B	FE	3 B	30	A
013	DC	F8	06	A8	05	AA	06	BA	07	BE	8	FE	38	$3 F$	18	FE
0140	38	43	1 B	FE	3B	47	18	98	FE	3B	4 C	1B	FE	3B	50	
0150	FE	3B	54	1 B	9A	FE	3 B	59	18	FE	3 B	5D	7B	FE	38	
0169	1 B	DC	8A	FE	AA	9A	FE	BA	98	FE	BB	28	88	3A	3A	
0170	F6	3B	74	1 B	F6	3B	78	1B	07	F6	3 B	70	1 B	F6	3E	
0180	18	06	F6	38	86	7B	F6	38	8A	18	15	16	17	05	F	,
0190	92	18	06	FE	3B	97	1B	07	FE	3 B	90	18	DC	19	86	E
0140	F'tict	F	ME	FE	FB	EO	3A	00	15	15	16	16	17	17	19	19
01m0	86	FB	${ }^{\text {F }}$	34	00	F8	01	A5	F8	09	A6	A9	F8	11	A7	OD
012	Fis	08	3	CF	F8	03	B5	B6	B7	50	F8	02	B9	30	00	FE
0100	90	日s	86	B7	5D	F8	03	B9	30	00	72	70	22	78	2	5
O1EO	C4	64	C4	F8	02	B0	F8	00	AO	80	E2	E2	20	AO	E	
01F0	AO															

The program requires 1 K of memory. Program 2 pagesidisplay 2p. LOCATION 0090: NETRONICS=69, QUEST=61. INPUT ON EF4 + HEX KEYPAD. Please pardon the absence of listing. Watch those eights and Bees.

SS $=$ STACK, $X X=$ DONT CARE.
END
by: (Author unknown - please write us for credit)
$* *$
$*$ EDITOR'S NOTE- This article is presented for interest only and ${ }^{*}$
$*$ it's application may in fact be illegal in your area. Check with
it your telephone company before connecting to their system 11

The software/hardware presented here enables your 1802 computer to dial a telephone number for you. This was created because of a television show called "Trivia" on our local cable TV system. The moderator asks a series of questions and people phone in and try to answer them. The callers with the correct answers win prizes. This type of operation jams up the phone system, so that many repeated tries are required before getting a connection to the TV station. With only rotary dial phones in our house this becomes a pain in the index finger for a one hour show. My wife got after me about an automatic dialer. This will dial up to a fourteen digit number (3 digits for a dial access code, 3 digits for an area code and 7 digits for the phone number) or more if required for some reason.

The dialer program is designed for my particular application - dialing a repetitive phone number. This program may also function as a subroutine of a larger communications program, with the addition of features such as ring/dial-tone/busy-signal detect, auto hang-up, redial and electronic directory.

The program, as written, utilizes an IN switch to initiate, a relay to pulse the red wire of the telephone line, and two hex digits to indicate the dialed digits. Specific hardware assignments may be changed to suit your system with the appropriate software changes. A drawing of the hardware required to implement the system is shown in figure 1.

The program is organized as a series of two nested counting loops and one subroutine timing loop. The inside loop is for counting the number of dialing pulses for each digit and the outside loop counts the number of digits to be dialed. The subroutine timing loop is for delays in the dialing operation, the pulse width, interpulse spacing and the interdigit spacing.

The number of digits to be dialed is stored as a hex digit at $M(34)$ and the digits to be dialed are stored starting at M(35). One digit is stored in each byte, with 01 to 09 HEX representing the digits 1 - 9 and $O A$ HEX representing O. For example-

$$
1-203-555-1212=O B, 01,02, O A, 03,05,05,05,01,02,01,02
$$

starting at memory address 34 HEX.
The program is entered at $M(0000)$ with $R(0)$ or $R(3)$ as the program counter. After removing the telephone handset and getting a dial tone, press the IN key to initiate dialing. The phone number is dialed once and the program returns to wait for the IN key to be pressed again for a redial. The digits are displayed in the HEX LED display when they are dialed.

The range of delay times shown in Figure 2 are what worked with my telephone company's equipment, and may need to be adjusted to fit your companies requirements. This is , by the way, a replacement for a rotary dial phone, not for dual-tone frequency dialing. Remember also to check the telephone companies regulations regarding user connected equipment (and any required inspection and approval) before use.

FIGURE 1 - HARDWARE REQUIREMENTS

R(2) Stack Pointer
R(3) Program Counter
$\mathrm{R}(9)$ Number of Digit Counter
R(A) Dialed Digits Counter
R(B) Subroutine Program Counter
R(C) Delay Loop Counter
Pulse Time $=($ SDLY $)=10$ (slow) to 04 (fast)
Digit Time $=($ LDLY $)=80$ (slow) to 10 (fast)

FIGURE TWO - REGISTER USAGE AND TIME CONSTANTS

NEW MNEMONICS FOR THE NETRONICS ASSEMBLER

- by David W. Schuler, 3032 Avon Road, Bethlehem, Pa. 18017, U.S.A.

The idea of a CALL or RETURN instruction in the Netronics assembler is only a dream to some people. With a simple patch, it is possible to add both a CALL and RETURN instruction to eliminate the sequence:

SEP CALL; ,A(SUBRTN) / CALL=R4
SEP RETURN / RETURN=R5
Having to type both of these instructions is a waste of time and is very prone to errors.

DATA TABLE
The Netronics assembler has its data table loaded from Hø9øø to HØB12. (See figure 1 for an ASCII listing) Upon disassembling this table, each entry has the form:
[mnemonic] [cr] [opcode] [extra_byte_count] for example, the DEC instruction takes the form

DEC [cr] $2 \varnothing \varnothing 1$ /in hex: \#44 $4543 \not 0 \mathrm{D} 2 \varnothing \varnothing 1$ The key to each entry is the EXTRA_BYTE_COUNT byte. This byte tells the assembler how many bytes to add to the object file.
$\varnothing \varnothing$ - no bytes - ex. SEQ
Ø1 - low order only - ex. DEC
ø2 - one byte - ex. BR
$\varnothing 6$ - two bytes - ex. LBR

CHANGES

In order to add a CALL and RETURN instruction, some space must be freed-up in the data table. Fortunately, RCA has more than one memonic for a few instructions. The space is gained by deleting the entries for $B L, B M$, and NBR. These instructions are still accessed by using BNF, BNF, and SKP respectively. The table is then compressed to take out the spaces that were created when the routines were deleted. At the new end, the CALL and RETURN entries are added, which will again fill up the table completely. (Listing 2 shows a complete listing of the final table (Hø9øø to $H \varnothing B 12$)).

NEW FORM

The new form for the CALL and RETURN instructions is: CALL SUBRTN ..which will assemble as D4 and
RETURN ..which will assemble as D5
No punctuation is required with this form, which reduces the effects of MURPHY'S LAW since there are fewer characters to type. In a long source file, these changes can take off a substantial number of bytes. Each new CALL instruction takes 9 fewer source bytes and each RETURN takes 4 fewer source bytes.

The above changes are only applicable to people who are using SCRT (R4=CALL, R5=RETURN), but the theory behind the

G9EB IDL

MON ITOR V4.1 *HEX DUMP										
START:0900										$\begin{gathered} N \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$
STOP:	: 1 Bl 2									
0900	49 4E	430 D	1021	4445	430 D	2001	474 C	4 FE D;		
2910	8001	4748	49 CD	9001	504 C	4FD D	APD1	5048;		¢ \%
0920	490 D	BDO1	4 CA 4	412 D	4001	5354	520 D	5001;		
0930	4 CA 4	588 D	FDEC	4F52	490.	F903	$414 E$	$440 \mathrm{D} ;$		
0940	F2ab	584 F	520 D	F300	4144	440 J	F400	5344;		
0950	49 CD	FDC3	5348	520 D	F600	534D	49 CD	FFe 3:		\%
0960	404	490 D	F8Q 3	$4 F 52$	0 DF1	0841	4E49	0 DF A;		
8970	- 358	5249	$\square \mathrm{DFB}$	Q 341	4449	0 DFC	- 353	$440 \mathrm{D} ;$		
0980	F500	534 D	C DF7	0142	520 D	3002	425A	0D32;		
0990	2242	4446	CD33	8242	505A	¢ 033	1242	$4745 ;$		
09 A	Q D33	2242	312 D	3402	4232	0 035	¢242	330D;	O	-
99B0	3602	4234	CD3	8253	4B50	- D38	0042	4E5A;		${ }^{\circ}$
09 Co	- D3A	¢242	4E46	C D3B	0242	4DED	3 BE 2	424C;		
99D0	© D 3B	0242	4E3	- D3C	0242	4E 32	0 D3D	0242;		
99E0	4E 33	0 D 3E	D2 42	4E 34	- D3F	0249	444C	- DD0;		
09 FO	0053	4550	- DDD	2153	4558	- DEQ	0152	4554;		
- ADO	Q 778	0044	4953	CD71	0053	4156	0 D 8	DE4F;	㮩し	
AAI 0	5554	0 D68	¢ 449	4E50	0 D60	054 C	444 E	ODOE;	-	
9 A 20	0142	518 D	3102	424 E	510 D	3902	4952	580D;		
Q A38	6000	$4 \mathrm{C4} 4$	5841	- D72	0053	5458	440 D	7300 ;		
DA4D	4144	430 D	7400	5344	420 D	7500	5348	5243;		
0 A50	0 D7 6	0052	5348	520D	7600	534D	420 D	7700 ;		
0 A60	4D 41	524 B	- D79	22.52	4551	Q D7 A	0853	4551;		
- A70	¢ D7 B	$0 \cdot 41$	4443	490D	7 CO 3	5344	4249	- D7 D;		
- A80	© 353	484 C	430 D	7 EDO	5253	484 C	- D7 E	De4C;		\%
- A90	5344	460 D	CFOQ	5348	400 D	FEDO	534D	4249 ;		
OAAD	- D7 F	D34C	4252	-DCD	064 C	4251	$\bigcirc \mathrm{DCl}^{\circ}$	D64C;		
- ABD	425A	- DC2	064C	4244	460 D	C306	4E4F	$500 \mathrm{D} ;$		
$\triangle A C D$	CACD	4 C 3	4E51	- DC5	004 C	534E	5ADD	C600;		
- ADD	453	4E46	\triangle DC7	OD4E	$4 \mathrm{C42}$	520 D	C806	4C53;		
DAED	4 В \quad ®	Q DC8	004 C	$424 E$	510 D	C906	$4 \mathrm{C42}$	4E5A;		
- AFD	\square DCA	064 C	4245	460 D	CB06	4C53	4945	- DCC;		
- Boe	$004 C$	5351	- DCD	004	535A	- DCE	C04E	4252;		$\stackrel{5}{6}$
© Bl ¢	DD38	02:								¢

Listing 1

	69F9 RIS
*ASCII DUMP	$09 \mathrm{F9}$ DIS
START:0902	09 FF SAU
STOP: OBI 2	Qaes OUT
090. INC	CADB INP
0966 DEC	OAl1 LDN
090 C GLO	$0 \mathrm{Al7}$ BG
0912 GHI	CAIC BNQ
0918 PLO	e A22 IRX
091 EHI	¢A28 LDXA
0924 LDA	© A2F STXD
092 A STR	0 A36 ADC
0930 LDX	QA3C SDB
0936 ORI	\triangle A42 SHRC
393 C AND	0 A49 RSHR
$0942 \times 0 \mathrm{R}$	0 A5 Smb
0948 ADD	DA56 MARK
-094E SDI	ØA5D REQ
2954 SHR	0 A63 SEQ
095 A SMI	© A69 ADCI
0960 LDI	0A70 SDBI
0966 OR	©A77 SHLC
¢96B ANI	DA7E RSHL
C971 XRI	2A85 LSDF
0977 ADI	$\square \mathrm{ABC} \mathrm{SHL}$
697D SD	0 A92 SMBI
0982 SM	0 A99 LBR
0987 BR	0 A 9 F LBQ
098 CBZ	0 AA5 LBZ
0991 BDF	ØAAB LBDF
0997 BPZ	©AB2 NOP
999D BGE	0 AB8 LSNQ
09 A 3 Bl	OABF LSN Z
09A8 B2	©AC6 LSNF
69AD B3	OACD NLBR
$09 \mathrm{B2}$ B4	ØADA LSKP
69B7 SKP	0 ADB LBNQ
69BD BNZ	0 AE2 LBNZ
09C3 BNF	@AES LBNF
$09 \mathrm{C9}$ BN1	©AFE LSIE
69 CF BN2	DAF7 LSQ
99D5 BN3	OAFD LSZ
99DB BN4	$0 B 63$ CALL
	OBDA RETURI

-by Tony Setaro, 145 Shunpike Rd., Cromwell, Connecticut, USA, 06416
The purpose of this article is to present information to assist in the independant use of the 57109 Number Oriented Processor that is an integral part of the NETRONICS FULL BASIC package.

Background
Like many others, I find FULL BASIC to be extremely limited except for its excellent math capability made possible by the 57109. It naturally follows that the use of the 57109 , independant of BASIC should be helpful.

The following narrative, subroutines and examples should assist anyone to make use of this tool in their programming. It is assumed that anyone interested in this subject has the National Semiconductor Data Sheet on the 57109 that was included in the NETRONICS' package. Except for the interfacing, the Data Sheet contains all information needed to use the 57109.

INPUT
All numbers and commands are entered from memory to the math processor (MP) via an OUTPUT 5 (65) instruction. Do this by setting $R X$ to the address of the byte to be input and issue the 65 instruction or set X to the PC and issue a 65 instruction immediately followed by the byte to be input.

The MP requires all numbers and commands to be 2 digits. Each of the 2 digits is in octal notation and only contains 3 bits. However, these 2 octal digits are moved from memory into the MP as a single hexadecimal byte where the 2 high order (leftmost) bits are insignificant. eg., to input the number 1 into the MP,"Ol"octal must be fed in as 6 bits- 000 001. This must represented in memory as hex " 01 " or 00000001. Straight forward so far, but to input the command "Master Clear", 57 octal must be fed in as- 101 111. This is represented as 00101111 or 2 F .

Exhibit A is a list of all numbers and commands in hex.
The MP must be synchronized with the 1802 by a delay between each input byte. This delay is accomplished by issuing INPUT 2 instructions until the proper response is received. See the subroutine "I/P Delay".

OUTPUT

Results can be obtained from the MP and put into memory by issuing 2 OUT instructions (16). The first of these instructions is followed by an input delay and the second is followed by an output delay. The output delay is a loop that continues until EF2 $=1$. When EF2=1, the MP is ready to output results which can be put into memory by issuing an INPUT 2(6A) instruction either 10 or 12 times depending on whether the MP is in Floating Point (FP) or Scientific Notation (SN) mode respectively. Each 6A instruction must be followed by an output delay.

Each 6A instruction places a byte in memory. The high order nibble of each byte is a 9 which is meaningless and can be eliminated. If the MP is in FP mode, the first output byte identifies the sign $(90=+, 98=-)$ and the second byte identifies the position of of the decimal point in the mantissa. This requires manipulation as a $9 B$ indicates the decimal should be placed immediately after the most significant mantissa digit and decrements until 94 indicates the decimal is after the least significant digit. The 8 mantissa digits follow from most to least significant.
If the MP is in SN mode, the first output byte is the most significant exponent digit and the second byte is the least significant exponent digit. The third output byte contains the sign of both the exponent and the mantissa (the 8 and the 0 bits). The fourth byte is the decimal point location which is always 98 and is not needed. The 8 mantissa digits follow.

To illustrate the above, two subroutines are included in exhibits B and C. Both routines utilize a standard call and return technique (SCRT) that always resets X to 2 on a D4 or D5.

The input subroutine is called by $D 4 X X 00$ and is followed by a string of numbers or commands in hex notation as shown in exhibit A. The string is terminated by an FE . If an FF byte is encountered in the string, the next two bytes must contain an address where from 1 to 8 numerical bytes are stored followed by either a plus sign (2B) or a minus sign (2D). The string continues after the 2 byte address until an FE or another FF is encountered.

The output subroutine is called by D4 XX3B and is followed by three bytes. The first identifies the number of decimal places that are wanted in the final result (from 00 to 08) and the next two are the address of the final 9 byte answer (8 digits plus a sign). This output routine is used for floating point only and assumes that the MP has not been toggled into $S N$ mode.

The output subroutine first dumps 10 bytes into memory at XXF0-XXF9 while changing the high order nibbles from 9 to 3. Eight bytes of memory at the designated location are zeroed and the sign is stored. The number of decimal places wanted in the final answer is calculated and the result in ASCII is moved to the final location.

SCIENTIFIC NOTATION

It is important to realize that all processing takes place internally in scientific notation mode. The TOGGLE command (22) changes mode from FP to SN and vice-versa. The MCLR command (2 F) , in addition to resetting all MP registers, places the MP in in $F P$ mode. $E E$ ($O B$) may be issued with the $M P$ in either mode and does not TOGGLE.

The TOGGLE command only affects the size and format of the results from the MP.
The full results of the MP when in SN are 12 bytes, not 10 as in the attached subroutines.

EXAMPLES

Assuming that you entered the code from exhibit B and C into page $X X$ of memory, enter following into some other page:

00	D4XX00	Call Input
03	2F	Master Clear
04	$\begin{array}{llll}01 & 02 & 03 & 39\end{array}$	123+
08	02023 B	22X
OB	FE	Terminate Instruction
OC	D4XX3B	Call Output
OF	00	No decimal consideration
10	YYYY	Address of final answer
12	3012	

Execute and YYYY should equal $\begin{array}{lllllllllllllllllllll}30 & 30 & 30 & 30 & 32 & 37 & 30 & 36 & 2 B\end{array}$
or $123+22 X=2706+$
Now enter

00	D4XX002F	Call Input and MCLR
04	FFYYYY	Enter numbers at YYYY until a 2 B or 2D
07	2134	Enter and
09	$01020 A 020539$	$12.25+$
$0 F$	$F E$	Terminate instruction
10	D4XX3B	Call Output
13	02	Allow 2 decimal places in final answer
14	$Y Y Y Y$	Address of final answer
16	3016	

3016
Execute and YYYY should equal 30303030363432362B or

EXHIBIT A

SUBROUTINE : INPUT TO MATH PROCESSOR CALL: D4 XXOO ssssss...FE Terminates FF followed by 2 byte addres

00 E6
01 06FBFE321A
06 FBO13210
0A 65D4xxlc
OE 3000
10 1646BA46AA
15 D4XX22
183000
1A 16D5
1C 6A7E7E
$1 F$ 3BlC
21 D5
22 EAOA
$24 \quad$ FB2B3221
28 FB063293
2C OAFAOF5A
30 65D4xxlc
343022
360000000000

Start SEX 6 Set X to Link
Test for FE- Yes, RETURN
Test for FE - Yes address follows
Input String- Call IP Delay
Branch to Start
Addr Input from memory- load RA from link
Call Inpmem
Branch to Start
Ret Main Return
IP Delay Input Delay Subroutine

Inpmem Input memory subroutine
If + Return
If - Change sign then Return
Zero high nibble
Input byte from memory- Call IP Delay
No meaning

F80AAC
93BDF8FOAD
46AB46BA46AA
E36516D4XX1C
E36516
3D52
ED6A
FOFAOFF9305D
1D2C
8C3A52
F808AD
F8305A
2D1A8D3A64
FBFOAD
FOFB30328F
F82D5A2A
1DF83C
F7AC
8 BE 252
8CF4AC
FCFIAD
EAOD73
2C2D
8C3A87
D5
F82B
3076
E3650C
D4xx1C
D5

RC= No. of characters from MP
$\mathrm{RD}=$ Address of scratch work area
Link load RB. 0 and RA
Issue OUT command- Call IP Delay
Issue second OUT command
OP Delay Output delay - Loop until OP ready
OP ready- put byte in memory

- There is time for this processing
- before going to
- OP Delay

All MP results are npw in work area
Zero area before storing final answer
Point RX to sign
is it +?
Sign Store - sign
Point RX to decimal point
Calc no. in integer
Calc total no. in answer-
store in RC. 0
Move answer from work area to final location

Main Return
Store + sign
Change sign- from Input subroutine
Call IP Delay
Return

EXTHIT C

RCA/Solid State Division Poute 202 Somerville, N.J. 0eb 76 (201) 0e5-6423

Three new CMOS video interface IC's from RCA emehance video and graphics display capabilities of the CDP 1800 microprocessor. The Video Interface System Chip Set features black-andwhite, gray scale and color graphics and motion on a 40×24 character display. The chip set also features programmable line and dot colors and offers a variety of formats for video/graphics display and modification under software control, with either NTSC or PAL compatible output signals. The chip set has hardware-scroll capability and provides a sound output of white noise and eight octaves of programmable tones, variable in 16 steps from 0 to 0.78 VDD.

For further information on the VIS Chip Set, including data File No. 1197 and application note ICAN-7032, write to RCA Solid State Division, Box 3200, Somerville, NJ 08876, or call Memory/Microprocessor Marketing at (201) 6856206.
-by R. N. Thornton, I403 Mormac Road, Richmond, Va. 23229
I recently purchased a used Selectric terminal from Worldwide Electronics. Since my budget was limited, I ordered the $\$ 200$ " ${ }^{\prime \prime}$ unit, which is as-is, and guaranteed not to work. The printer arrived in good shape, and with an excellent maintenance manual. After a lot of reading, cleaning, oiling, greasing, and adjusting, it works. This article was typed on the machine. During my work and reading, there were frequent references to two tools which are required, but which are not generally available. One is a Hooverometer, the other a Hand Cycle tool. After asking around, I was finally able to locate and borrow a Hooverometer, and attempted to make one, but was unsuccessful. After reading over the manual, it was apparent that a couple of simple gauges could be made of sheet metal to doo the required adjustments. These two gauges are shown as tools $\$ 1$ and $\$ 2$. The Hand Cycle tool allows you to turn the operation shaft to operate the machine manually during adjustments. This is merely a small disk with a threaded rod which screws into the end of the operation shaft on the right side of the typewriter. The trouble is that the tool has a left-hand thread. To solve the problem, I filed flats on opposite sides of the end of the operation shaft and made tool \#3, which is placed on the end of the filed shaft and allows you to turn it (counter-clockwise only, please). There are also a set of drawings which show how to use the homemade gauges. The escapement rack position adjustment is a little different than that shown in my maintenance manual, and was taken from an IBM Selectric manual. Both methods result in the same distance, but the IBM method was easier without the Hooverometer.

If you should decide to buy one of these units, ask for a correspondence code machine if they have it, as the type balls for BCD and correspondence machines are different. Balls for the correspondence code machines can be obtained from local stationary stores, but BCD balls are hard to find. I have had to use this printer with the computer keyboard and a translation program only, as I havent been able to get a BCD ball. The correspondence code balls work fine, but the keyboard doesn't match the characters printed.

Since I wanted only a printer, and don't like serial interfaces, I removed the transmit coding devices and the interface board, and replaced it with a parallel interface of my own design. I'll be glad to share experiences or offer any help I can to others who may purchase a Selectric. I love it!

ANOTHER TAPE CONTROLLER

- by Karl W. Schultz, 4069 Forest Ave., Western Springs, Il 60558

Like David W. Schuler (IPSO FACTO \#19, P25), I was faced with the problem of putting together a tape controller circuit at low cost. I built a circuit very much like David's, but the sudden switching of the relays caused a loss of power elsewhere in my computer because of the sudden current drain and lack of an adequate power supply. This power problem caused loss of data in my 8 K of RAM. Not wanting to sink money into a larger power supply at this time, I went a different route.

I decided to utilize the cassette tape recorder's power supply for the power needed to drive the relay. Since the normally closed contacts on the relay are used, the cassette drive is enabled when the relay coil is de-energized. When the relay coil is energized, the cassette drive contacts are opened, stopping the cassette. Thus current flows either through the relay coil or the cassette drive, but never both (for very long, anyway).

Note the use of the opto-isolator. I used it to keep the cassette drive as isolated as possible from the computer because I was having ground loop problems with the audio portions of the circuitry. So I used both poles of the relay switch to switch both power leads to the cassette on and off. I have had good results from the circuit below. (Same circuit for each drive). I put everything inside the battery compartment of each deck so only two wires come from the computer to each deck (not counting audio wires).

AN INTERFACE FOR THE EPSON MX－80 PRINTER
－by Harley Shanko
As one adds peripherals to a homebrew microprocessor，unless much advanced planning is done，certain interfaces present problems．This was observed regarding my own system when an Epson MX－80 printer was purchased and interfaced．

Figure 1 illustrates the present printer hardware interface；my orginal （SwTPC PR－40）printer interface was usable with a few mods．Because the MX－80 requires a delayed stobe，relative to the data transitions，the one－ shot was added．The negative transition of the complement OUT 3 signal stobes data into the＂port＂and the positive edge triggers the one－shot．

The MX－ 80 inputs require about 1.5 ma ．to sink them to ground．The 74LS123 and the 74LS05 open collector drivers with 4.7 K pull－ups are more than adequate for this purpose．My cable length is about 6 feet of 40 conductor ribbon cable，with 36 lines interfaced to a 57－30360 Amphenol（Centronics compatible）connector at the printer end．

Listing 1 is my present routine which drives the 6847 VDG and the printer， if enabled．From the keyboard routine I use $Q=1$ for printer $O N, Q=0$ for OFF；thus the switch at address 8A9A．If the printer is enabled，the following EF2 tests for whether the printer is ON and not BUSY．Listing 2 has been utilized for driving the printer in the graphics mode．This routine is called via a BASIC USR and dumps 256 bytes to the printer；it then returns to BASIC to provide formatting（spacing to move the graphics from the left margin）and＂CRLF＂via a PRINT statement，in addition to counting out the number of lines to be printed．

$$
\text { Listing } 1
$$

8490	$F A$		ANI	7F
8 A92	AF	1	PLD	F
EA93	EF	$?$	PHI	F
$8 A^{9} 4$	D4	T	CALL	8B12
EA97	日F	．	GLO	F
8498	22	＂	DEC	2
8A97	52	R	STR	2
EAFA	39	9	BNQ	AO
BA9C	3D	＝	BN2	9 C
BA9E	63	－	OUT	3
日A9F	38	日	SKP	
GAAO	12	－	INC	2
gnal	05	U	WRET	

If so，return to caller of first byte to be printed on this pass

FIGURE 1 PRINTER INTERFACE
quEST DYNMIIC BOARD FIX

- by Lourens Blok and Cors Bouwhuis Bentrotstraat 28, 7531 AB Enschede, the Netherlands

A problem exists with the wait-state interface between the dynamic board and the ELF II. To correct the problem, delay TPA by placing a resistor capacitor delay in the U6-U6A circuit. Cut the trace from pin 3 of U6, under the board, and connect an 100 ohm $1 / 4$ watt resistor between pin 2 of U6 and the plate through hole for pin 3 U6 (under U6A), and connect a 100 pf capacitor between pins 3 and 7 of U6. Corrections are illustrated on the drawing below: $\quad 45$ A $\quad 4$

OHM'S LAW
by H. Hallaska, 212 N. 70th St., Milwakee, WI. U.S.A. 53213
Here is a program that may be useful to members who are electricians, C.E.T. or students thereof.

The program is written in netronics full basis level III. I started in tiny basic, but saw the obvious pitfalls of integer math and the intracacies with working square root subroutines into it, tricking "tiny" into printing decimals and the like, ergo full basis.

The following figure shows OHM'S Law relationships to voltage, current, resistance, and power:

As can be seen from the above figure, there are 12 possible computations, 3 for each of the values of voltage, current, resistance, and power; and as in any math problem, 2 values have to be known if we are going to have something to compute.

When the program is run, the computer asks for 4 inputs; voltage, current, resistance, and power. Enter the 2 known quantities. Enter 0 for the unknown quantities. Enter only volts, amps, etc. never millivolts, milliamps, etc. For example 100 milliamps is entered as . 1 amp . Answers are also in volts, amps, etc. Convert them back by moving the decimal.

This program will also serve as a sample program for those who are learning programming in RPN (Reverse Polish Notation) which is the maths syntax in netronics full basic. The program will work with other basics, if converted to algebraic syntax. For instance line 110 could read "110 if E>0 if $I>0$ PR"R" $=$;R; (E/I);" OHMS".

1802 Quickies

- by L.A. Hart, Technical Micro Systems Inc., P.O. Box 7227, Ann Arbour, Michigan, U.S.A. 48107
Memory-Mapping the 1851
There's a timing problem in the 1851. If you must memory-map it, you must invert $\overline{M R D}$ and $\overline{M W R}$ and interchange them, and delay TPA and CS to the 1851 by two gate delays (use two 4069 inverters, for example).

1854 UARTs Can Argue With Each Other

If two 1854 UARTs are used to talk to each ohter at high baud rates using the DA and CTS handshake lines, there will be a timing problem. The receiving 1854 asserts DA before it finishes receiving the character. If this signal reaches the transmitting 1854's CTS input, it will abort the character in the middle of the stop bit, fouling up reception. A solution is to add about two baud-rate-clocks of delay to the CTS input (both stages of a 4013). Side note: the 1854 is not very good at receiving distorted or badly-timed characters. The improved 1854 A is better, but still not as good as most other (NMOS) UARTs.

New 1802 Software Source
Technical Micro systems Inc., P.0. Box 7227, Ann Arbor, MI, USA 48107. They've been selling boards, parts, and systems for a few years now, and have recently added 8TH, a programming system based on the FORTH language, for the 1802. 8TH comes with full source code in a 4 K ROM, and includes a monitor, assembler, editor, and compiler, all merged into a single package. Write for details.

Hex Keypad for the ELF (PART II)

- by A. Boisvert, Quebec City, P.Q.

Program used with the hex keyboard to enter consecutive byte in ELF memory.

$\frac{\text { ADD. }}{00}$	$\frac{\text { CODE. }}{90 B F}$	Comments 02
F810AF start address		
05	3710	(0010) in reg. F Go to $X^{\prime} 10^{\prime}$ if enter pressed with RUN
07	$3 E 07$	Wait for Data Ready on EF3
09	$E F$	Set reg. X to F
$0 A$	$6 C 64$	Read on display data just entered
$0 C$	$7 B 7 A$	Set a beep tone
$0 C$	3007	Go wait for the next byte
$0 E$	3007	Go wait for the next byte

NOTES
Address $X^{\prime} 0003^{\prime}$ - start address of data (or prog.)
X"0006" - branch to add 10 after the data or program is loaded. X"0007" - data ready pulse test. Use the proper instruction if you are using another EF line.

HOW TO USE THE PROGRAM
Just enter the byte on the hex keyboard (high digit first). The data will enter in memory and will be displayed automatically. The memory address will also increment and a tone will sound if the tone circuit is turned on.

To branch to your program, turn RUN to off and while holding the ENTER switch set RUN to on. The ELF will branch to the address set at location X"0006".

USER SURVEY

In a forthcoming issue, I plan to compare the most commonly used monitors. If you use one of the following, please write the Editor, ACE, and give me your opinion of its strengths, weaknesses, general utility and also ideas for improvements. As you may know, the club has been working on a "better universal" monitor for some time, but it is hard to improve on the existing monitors, and even harder to be universal, accommodating all types of $1 / 0$. Your opinions will be helpful.

1) Steve Nies "The Monitor"
2) T. Crawford "RCA Bug"
3) R. Cox "Monitor"
4) Quest "Super Monitor"

WE'RE SERIOUS ABOUT THE $1802 \ldots$

You've met the 1802: Now we'd llke you to meet BASYS', our Ilne of Industrial-quallty CMOS microsystems that can put the full power of the 1802 to work for you. BASYS boards are all CMOS, and have the kInd of real-world $1 / 0$ it takes to Interface motors, swltches, dlsplays, etc. directiy -without extra boards or componentsil

Take BASYS/1 for example. It's a complete 1802 system whth up to 2 K of RAM, 8 K ROM, serlal RS-232 or current loop, outputs to drlve elght 600 mA 50 V loads or ten 7segment displays, and inputs for up to 80 switches. All on a $4.5 \times 6.5^{\prime \prime}$ boardl for software, order the low-cost IDIOT monltor, TMSI TIny BASIC, or 8 TH (our version of FORTH), all It ROM with full source code.

Expandlng your Super-LLF? Our BASYS/4 Memory-i/0 expander plugs into your CPU socket and adds all the reatures of BASYS/1 to your ELF. And there's more: BASYS/2 10-slot motherboard. BASYS/3 extender. BASYS/5 CMOS power supply with battery backup. BASYS/6 $16 \mathrm{~K} / 64 \mathrm{~K}$ bytewlde RAM/ROM board. BASYS/7 16-chan. 12-blt A/D. And more on the wayl

INIRODUCIORY SPECIALS: (US\$; shlpped postpald)
COSMAC CDP 1802 CE $\$ 10.00$ BASYS/1 W 1 K RAM $\$ 149.50$
Software (In ROM): kit form 129.50
1010T/4 monltor 15.00 bare board 25.00
$\begin{array}{lllll}\text { TMSI TIny BASIC } & 50.00 & \text { BASYS/4 w } 1 \mathrm{~K} \text { RAM } \$ 139.50 \\ \text { 8TII } & 100.00 & \mathrm{kIt} \text { forn } & 119.50\end{array}$ $\begin{array}{lr}\text { klt forn } & 119.50 \\ \text { bare board } & 25.00\end{array}$

NAME
PRODUCT ORDER

DATE \qquad

QUANTITY UNIT PRICE * TOTAL

25.00
25.00
40.00
25.00
20.00
40.00
50.00
3.00
40.00
40.00
20.00

\$
$\$ 18.00$

1. "Defacto" Year 1-3 (Edited)
2. Year 4 Reprint

Membership
Current year - Sept 81 to Aug 22, includes 6 issues of Ipso Facto

VOTE FOR BEST ARTICLE

Issue \qquad Article \qquad
PRICE NOTE
Prices listed are in local funds. Americans pay in US funds. Canadians in Canadian funds. Overseas in US Funds. Overseas orders, for all items other than membership, add $\$ 2.00$ US for air mail rather than parcel post. Please use money orders or bank draft for prompt shipment. Personal cheques require up to 6 weeks for bank clearance.

SALES POLICY
We guarantee that all our products work in an A.C.E. configuration micro computer. We will endeavour to assist in custom applications but assume no liability for such use. Orders will be shipped as promptly as payment is guaranteed.

MAILING ADDRESS: \qquad
\qquad
\qquad
\qquad

PHONE NO.:

Note: Ensure mailing address is correct, complete and printed. Please ensure payment is enclosed.

ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
C/O M. E. FRANKLIN
690 LAURIER, AVENUE MILTON, ONTARIO

L9T 4R5

