
I ',J l~ E x PAGE

3

4

2

6

37

2:1

42

14

16

13

19

41

12

33

10

OCTOBER 1982ISSUE 31

NetronlC8 Text Editor Improvements

Netronlc8 Compatible Tape Load Program

1802 Hini-Olss8.embler

A PlJBLlCATIlI< IF 1lIE ASSOClATIlI< IF 1l£ Cl>lPl/fER-CIIlP EXPERlMEN1'ERS (ACE) 1981

Using the VOU Board for RAM Only

IPSO FACTO 18 published by the ASSOCIATION OF COMPUTER-CHIP
EXPERIMENTERS (A.C .E.), a non-prof it educational organ1zat ion.
lofor••tion In IPSO FACTO is believed to be accurate and relIable.
However, no responsibility is ae suaed by IPSO FACTO or the ASSOCIATION
OF COMPlTrER-cHIP EXPERIMENTERS for its use. nor for any infringements of
patents or other rights of third parties which a8Y result trom its use.

A Himloum Count 2114 Hemory System Using the YOU Board

Club Co.aunlque

Editor 's Corner

1802 eoaputer Conference Report

1802 - Apple Keyboard Interface

Software for the ACE YOU Board

He.hers I Corner

Executive Corner

Additional Notes about the Window Program

An 1802 ABse.bIer for 1802 fig FORTH

Permutations and Comhinations in Tiny Basic

Programming Tips - Lesson I

FORTH ImpIe.entation Notes-II

•

•

•

•

of S25 per qUdrter pag~ p~r

..

rct a l product ror
e rb·relldy tDpy.

HEElI S

rus rer

, W

ACf >i n 1 a(upt ,aver lstng (or (
issue wit h thu advertiser Subfiltttll9

ADVERTISING POllCl

.t.tTICl SlJtll41

Adf'ert 1

P bl !It

PUBLICATION POLICY '

H~~rl!-I

fl. dlHl It.

Pr IdlJlt

•
3

Editor's Corner

Last year at this time» I wrote my first editorial to embark upon the year
of developing the "serious system". It was a good year for our members
with the introduction of a quality» high-level language - FORTH - and
continued introduction of 1802 hardware - the Dynamic, EPROM and Backplane
Boards.

Our President has declared this year, our sixth, to be the year for
software development. Work is continuing on developing a quality operating
system, and several new or improved high-level languages will be introduced
shortly. This issue continues the series on FORTH» and other articles
offer useful programs for your use. A point must be made here. You» the
user» must make an effort to keep up with the Club in the way it is going.
For a start» a mini mum of 16K of RAM from OOOOH and 4 to 8K of EPROM at
COOO or up will be required to use the software and hardware being offered.
For members on the ACE buss, our board line offers these features. For ELF
II owners - Netronics and John Ware in Texas offer sufficient boards to
make this minimum system configuration. Also, the ACE-NAB offers a means
of using our boards on the ELF II with a slight reconfiguration of the
hardware. Quest owners may also increase their system through Quest
products» but not through an ACE/Quest interface (none exists).

BOARD NEWS
VDU Board

In response to increased demand for re-introduction of this board, ACE
is offering the VDU for sale on a pre-sale basis until November 10th,
1982. Anyone wishing to add 16K of static RAM or a 1 to 6K video
display at address EOOO - FFFF, must order this board now with payment
in advance (receipts will be issued - use money orders or certified
cheques only). The order for the board will be placed on November 15th
for the number of boards sold ONLY, with delivery via the post the
following week. This sales approach makes a departure from previous
sale policy from an existing stock. ACE does not have the financial
resources to stockpile an extensive line of boards.

Front Panel
The long-awaited companion to the ACE Backplane is here, in stock, in
quantity. The ultimate in user convenience» this board offers a Real
Time Clock» an EPROM programmer» IN Port 4 (Hex Pad) and Out Port 4 (Hex
Data Leds), a sophisticated Single Step, 16 bit address display via 4
Hex Leds» control circuitry and display, an ACE edge connector for
trouble-shooting and a small wire-wrap area. This board connects via
two edge connectors to the backplane ver , 1 or 2, and may be connected
via ribbon cable to other systems. Price: $35.00.

CPU Board
The ACE CPU Board is functioning beautifully, complete with 1802-4-5-6
compatabi1ity, 4-JEDEC EPROM sockets (2-4-8K)>> 1854 UART, 2 Ports,
RS232-C, power-on-reset, selectable Boot, including extensive wire-wrap
area. Price: $40.00.

Put away your trainer, or better yet - give it to your kids and move
up to a serious micro board» or dedicated controller panel.

4SOFTWARE NEWS
Included in this issue is a cassette loader program (Netronics compatible)
that will load into your system any cassette distributed by ACE (or
Netronics). Starting with the October 12th, 1982 Club Meeting, ACE will
make available public domain software to members - bring a cassette and
your own recorder.

FORTH is becoming widely used by our membership. Following are a few
changes you may wish to make to your listing. To cure a double echo
problem from the board (2 characters printed per input) - change:

OA8F H
OA77
OA79

to
to
to

048D
0573
1469

If VLIST bothers you (line over-run, e t cv) , drop "CR" after each 80
character line. The result is a continuous listing of commands change
13DF H to 1469.

If your monitor is not located at 8000H, change the following to your own
monitor's entry point:

118D H
1190 H

high byte
low byte

Fig FORTH and ACE FORTH
The copy of FORTH distributed by ACE more closely matches COXFORTH than fig
FORTH. Fig included an RCA UART driver at address 0543H and disk I/O
primitives at address 1503 which was considered to be of little use to the
average ACE member. All of the FORTH level words (the dictionary) are
identical to fig FORTH. However, beyond address 0575H, the words are
advanced z.a bytes. If you buy the fig FORTH Source Listing (highly
recommended), you will fin~ the code still useful by calculating the
address off set.

The following bibliography on FORTH is recommended to get you into the
language:

1. fig FORTH Source Listing for the 1802
2. fig FORTH Installation Manual
3. "Starting FORTH", Brodie (paperback)
4. "Byte" Reprints on FORTH, 8/80 to 4/81
5. fig Membership and Newsletter

fig FORTH
fig FORTH
Bookstore
fig FORTH
fig FORTH

USA
$15.00

15.00
20.00
5.00

15.00

CANADA
$18.00

18.00
20.00
10.00
27.00

fig: P.O. Box 1105, San Carlos, CA., USA. 94070 - Phone: 415-962-8653

5

Me.hers' Corner

FOR SALE:

T. Acuff, 1200 - 25th Street, Rock Island, Ill. U.S.A 61201 (309-764-5977)

SUPER-ELF (44 pin buss) - Giant Board, Color/Music Board, Power Supply,
Case, RF Modulator, Documentation. Best Offer

HELP:

O. Hoheisel, Her-an - bossdorf - atr , 33, 2190 Cuxhaven 1, West Geraany

Assistance in getting the Quest S100 dynamic board working on an ELF II
and Quest Super Expansion Board.

ERRATA:

Mystery Prograa - I.F. #30, p.25
address (OODO)H = A 9 PLO R9

A CDP 1854 UART Circuit - I.F. #29, p.18
Use same inport and outport for 1854, as per schematic - 1 connection
required at 1853 to CS of 1854. Alternative: NOR an inport and an
outport command together if using different ports.

Note:
MRD on 1854 determines whether a port select is an inport or an outport.

* * * BEST ARTICLE WINNERS 1981/82 * * *

I.F. # 25 L.A. Hart "Kingdom"

I.F. # 26 P.B. Liescheski "Schroedinger Equation"

I.F. II 27 J. Swofford "1802 Real Time Clock"

I.F. # 28 M. Franklin "EPROM Programmer"

I.F. II 29 L.A. Hart "A Bridge Ov~r Troubled Waters"

I.F. # 30 T. Hill "Window"

Congratulations I - and a free year's membership to each of the above.

6

1802 Co!puter Conference Report
by F. Feaver

The first 1802 Conference of the Association of the Computer-chip
Experimenters was held on Saturday, August 7th at the WeIland Campus of
Niagara College in WeIland, Ontario.

In spite of very short preparation time and little advertising, there was
still a good turnout of 1802 enthusiasts. Many of those attending were
involved in industrial or commercial uses of the 1802 micro, but were not
Club Members. They seemed to be getting their money's worth of useful
information!

The five speakers gave excellent illustrated talks on the RCA 1802 micro
family, its use and application.

The first speaker was our own Mr. Wayne Bowdish, Software Co-ordinator for
the Club, who talked on "Writing Quality Software", using handout copies
and slides very effectively.

Following Mr. Bowdish was Mr. Ivars Lauzums, Administrator of Marketing and
Planning, for RCA Microsystems Division in Somerville, N.J.

Mr. Lauzums told of the development of new RCA 1802 family members such as
the 1802A, 1804, 1805, and 1806, SOme of which contain RAM, ROM, and an
enhanced instruction set, which can run at a clock speed of up to 18 MHz.
Mr. Lauzums assured the audience that RCA had not abandoned the users of
the 1802 System, but instead was initiating a drive to promote its use with
more development systems and high speed chips.

RCA is setting up a software distribution section under the microsystems
division which will solicit software from users of the 1802 family and will
distribute it on request to others.

Mr. Lauzums gave the Club a new RCA Development System, several high speed
1805 chips and Development Boards as door prizes. Those in attendance were
also given four new RCA Manuals.

Mr. Lee Hart, Chief Engineer of Technical MicroSystems Inc. (TMSI) of Ann
Arbor, Michigan, was the third speaker. He spoke on the language, FORTH.
FORTH is a registered trademark, so TMSI called its revision of FORTH,

'''EIGHTH''.

Mr. Hart outlined the history of FORTH and illustrated how easy it was to
program in FORTH using as a subject, a tiny self-propelled Robot "turtle"
with a self-contained battery-operated micro. This little Robot was
programmed to move so many inches in one direction, stop, playa little
tune and change direction. Running on a table top, it never ran over the
edge, but instead sensed the lack of secure footing, stopped, played its
little ditty and then changed direction, Wheeling away from the table's
edge.

Cont'd •••••

•

7

The fourth speaker was Mr. Jan King, Chief Engineer of Amsat, The Amateur
Radio Satellite Corporation, charged with the responsibility of launching a
satellite into orbit for Radio Amateur communication over a large part of
the world. Mr. King told how the FORTH language was used for the radi~tion

hardened 1802 micro controlling the satellite. It was also indicated that
the FORTH dictionary had to be bilingual - English and German - to
accommodate the two principals: U.S.A. and Germany. There was no
redundancy developed into the satellite computer system, which was designed
for a ten year life.

The final speaker was one of the founders of the "ACE" Club, Mr. Eugene
Tekatch, President ·of Tektron Equipment Corporation of Stoney Creek, who
developed the Tek 1802 microcomputer and introduced the 1802 to Canada.
Many hundreds of Tek 1802 computers were sold across Canada and the U.S.A.
Mr. Tekatch has successfully applied the 1802 micro to industry in very
hostile environments, such as steel mills, in which heat, mechanical shock,
vibration and electrical interference would kill most other micros. He has
many satisfied customers. Mr. Tekatch discussed some of these problems and
shared his experiences with the audience.

He has developed an inexpensive logic probe which has provisions for acting
as a pulse injector. Samples of these probe kits as well as other products
were given as door prizes.

The Club wishes to thank all the above speakers and also the follOWing
electronics companies who kindly donated door prizes: L.A. Varah, White
Radio Lt d , , AMP of Canada Ltd , , Arkon, Tektron Equipment Corp., Western
Radio, and RCA.

A fine luncheon and delicious dinner were prOVided in the Cafeteria of the
College.

The Conference Convenors were Bert de Kat and Fred P1uthero, and they did a
commendable job. It is considered that the Conference was a success and it
is hoped that another can be held next year. Watch for future
announcements on the subject I

8

FORTH IMPLEMENTATION NOTES - II

by - Tony Hill, RR 2 , Hamilton , Ontario , Canada , LaN 2Z7

This article is the second in what I hope will be a continuing series on
FORTH for the 1802. I will try to include tips on the 1802 implementation of
FORTH as well as some general FORTH tips. I also hope to use these articles
as a lead in to other articles about FORTH written by different authors.
Please feel free to write.

This nonth we have an article by Ken Mantei on adding an 1802 assenbler to
FORTH. Ken is one of the original pioneers in 1802 FORTH and his letters and
articles have been nost helpful.

1) ERRATTA - FIG-FORTH LISTINGS
Much to our horror, ACE has recently learned that the version of fig-FORTH
we have been distributing is not identical to the fig official distribution.
There are several copies of 1802 fig-FORTH floating around, and the copy we
have been distributing is slightly different. Please note however, that the
two versions are FUNCTIONALLY IDENTICAL 1

The difference between the two versions is that fig has included UART I/O in
the middle of their listing. Unless you have the RCA systen this code was
written for, the extra bytes only waste memory. Our version does not include
then. The fig version also includes disk I/O for the RCA systen, which is
again useless if you don't have the same disks.

The net result of this difference is that the addresses of the high level e
fig-FORTH words are offset by a few bytes. Their function and definition has
not changed though. Conversely, all the low level (machine code) words are
the same in both versions, as the extra UART code is after the rest of the
machine code definitions.

Therefore, the comments about patching in I/O published in IPSO FACTO, and
the editor's comments about adding Simulated Disk and an Editor in the last
issue, apply to the ACE distriwtion of fig-FORTH. Fran here on in all
articles will be written to apply to both systems, and any differences will
be noted. FUnctionally, you the user will never notice the difference
between the two sytems when using FORTH.

2)Bugs in 1802 fig-FORTH
There are a few minor bugs in fig-FORTH. In the next few articles I will
discuss some of them, and present some ways to correct them. For example,
try asking fig-FORTH whether 20,000 is larger or smaller than -20,000. Or
check to see if the computation stack. is correctly checked for underflow.
Other problens are the effect of an attenpt to divide by zero, the way VLIST
overflows the edge of the screen and the fact that error numbers are
presented in the current base (which you can never renember at the time you
get the error). Also annoying is the way CMOVE is defined, such that an
attenpt to nove memory to an overlapping area can mess up the data. While
none of these problen are earth shattering, I will discuss some solutions,
and will print any other "bugs" that readers send in. Thanks to PVP for
pointing out some of the previously mentioned problems.

3)The 1802 Assembler
Included in this issue is an 1802 FORTH assenbler.
FORTH assemblers are probably in line here, as most of
are a little vague on the topic.

A few notes on using
the books I have seen

9

First of all, FORTH words written in FORTH ASSEMBLER are usually written in
reverse Polish, like most of the rest of FORTH. (Please stop groaning, it's
not that bad). Therefore, where you would nonnally write -

GHI RO or LDI EA

in FORTH ASSEMBLER this would be-

a GHI, or EA LDI,

Secondly, FORTH words defined in ASSEMBLER are started with the word CODE
instead of a " : ". Instead of a " : ", ASSEMBLER words are tenninated with
the word NEXT. For example, the following is a FORTH ASSE1'1BLER word called
NOTHING that executes a NOP (C4) instruction -

CODE NOTHING NOP, NEXT

Another tricky poLnt, to remember is that FORTH assemblers do not usually
allow labels to identify where branch instructions go to. This is due to the
fact that they are not usually two pass assemblers, and thus can not resolve
forward references easily. However, as most of the branching in FORTH
assembler words is required for loops, a set of assembler level loop words
similiar to the high level ones are usually provided.

The loop constructs are
IF, ELSE, ENDIF,

BEGIN, UNTIL,
BEGIN, AGAIN,

BEGIN, -- WHILE, REPEAT,
and are used the same way as high level
WHILE, take the assembler words for
a rguements . For example-

CODE WAIT BEGIN, EF4 UNTIL, NEXT

loops, except that IF, UNTIL, and
the branch instructions as their

produces a word WAIT that will wait in a loop on the status of EF4.

Note that you can branch or long branch to an absolute address if you know
what it is. For example, the word BYE to exit to a m:mitor at address 8000
could be written as-

CODE BYE 8000 LBR, NEXT

Study of the rest of the ASSEMBLER words should prove both educational in the
use of the assembler and in the overall power of FORTH as a progranuning
language.

4)Writing Machine Code Words Without An Assembler
It is possible to include hand assembled machine code in FORTH words, with a
little bit of work. For example the following is a routine to turn the Q
line on by creating a word called QON-

HEX CREATE QON 7B C, OC C, SMUDGE

Note that a OC op-code must be included in
byte (to re-enter the inner interpreter loop).
Mantei, who first pointed this out to me.
:S

the routine as the last
A tip of the hat to Ken

10

AN 1802 ASSEMBLER FOR 1802 fig-FORTH

by- Ken Mantei, Chemistry Dept., Cal State College, San Bernardino, Ca. 92407

Once both line and string editing and virtual storage (disc or simulated
RAM-disc) have been implemented on an 1802 fig-FORTH system, an ASSEMBLER
vocabulary can be developed. Until ASSEMBLER is added, FORTH words are
compiled fran high level FORTH words. ASSEMBLER allows a FORTH word to be
written in machine code. SUch words run quicker. M;)re importantly, CODE
words can test 1802 flag lines, manipulate the Q line and implement the 6x I/O
instructions.

The development and testing of an 1802 fig-FORTH ASSEMBLER has not been
completed. What is presented here will certianly be improved on. It will
allow one to successfully attach (and patch into FORTH) a first draft
ASSEMBLER. It has been used successfully to pop bytes off the FORTH
canputation stack to an 1802 port, or push than on fran a po rt.. The words
SEND and READ on lines 8-10 of SCR #8 do this.

To try this out, use the editor to change the error message on SCR #4 line 5
to "our OF PAGE BRANOi IN CODE ROUTINE BEING ASSEMBLED". Then enter SCR
#6,7,8 UPa\TEing after each screen. Type 6 load. If ASSEMBLER is to be a
permanent addition to the systan type:

FORTH DEFINITIONS DECIMAL
LATEST 12 +ORIGIN 1
HERE 28 +ORIGIN 1
HERE 30 +ORIGIN 1
HERE PErcE 1
I ASSEMBLER 6 + 32 +ORIGIN

This version for FORTH including compiled page ASSEMBLER may now be saved.

To write a word, called QON, that turns the Q light on type:

CODE QON SEQ, NEXT

To define HEXKEY?, a word that puts a "I" or "0" on the FORTH stack, depending
on the status of 1802 flag 4 type:

or
CODE HEXKEY? EF4 T/F, NEXT
CODE HEXKEY? EF4 Nor T/F, NEXT

To move a hex number fran the FORTH stack out the 1802 port 4, calling it
POP4, type:

CODE POP4 4 SEND, NEXT

To read "input port 4 to the stack type"

CODE PUSH4 4 READ, NEXT

Notice that ASSEMBLER words generally are followed by a canna. This
convention is used to remind one that these words can only be used in CODE
definitions. A <BUILD DOES> approach is encountered in the construction of
some assemblers, and corrections and improvements to this 1802 fig-FORTH
ASSEMBLER are to be expected.

SCR #6

11

(KAM 30 JULY 80)
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(FIGFOR'm 1802 ASSEMBLER 1)
HEX VOCABUIARY ASSEMm..ER IMMEDIATE
: iCODE ?CSP COMPILE (iCODE) [COMPILE] [SMUDGE
[COMPILE] ASSEMBLER; IMMEDIATE
: CODE ?EXEC CREATE [COMPILE] ASSEMBLER lCSP i IMMEDIATE
ASSEMBLER DEFINITIONS STR, F AND 50 OR C,

INC, F AND 10 OR C, DEC, F AND 20 OR C,
LDN, F AND C, i Lm, F AND 40 OR C,
GLO, F AND 80 OR C, GHI, F AND 90 OR C,
PLO, F AND AO OR C, PHI, F AND BO OR C,
SEP, F AND DO OR C, SEX, F AND EO OR C,
INP, 7 AND 68 OR C, OUT, 7 AND 60 OR C,
IDL, 0 C, i NOP, C4 C,; SEP, 7B C, i REO,
SAV, 78 C, MARK, 79 C,; RET, 70 C, i LDI,
LDX, FO C, LDXA, 72 C,; STXD, 73 C, i IRX,
XRI, FB C, C, : ORI, F9 C, C, : ANI, FA C, C,

7A C, ,
F8 C, C,
60 C,
-->

(KAM 30 JULY 80)

SCR #7 (KAM 30 JULY 80)
o (FIGFORTH 1802 ASSEMBLER 2)
1 DIS, 71 C,; OR, Fl C, ; AND, F2 C,; XOR, F3 C, ;
2 SHR, F6 C,; : SHRC, 76 C, SHL, FE C,; SHLC, 7E C,
3 ADD, F4 C,; : ADI, FC C, C,; ADC, 74 C,; SD, F5 C, ;
4 ADeI, 7C C, C, ; : SDI, FD C, C, ; : SDBI, 7D C, C, ;
5 SOB, 75 C, ; : SM, F7 C, ; : SMI, FF C, C,
6 5MB, 77 C, ; : 5MBI, 7F C, C, ;
7 NEXT C SEP, CURRENT @ CONTEXT 1 ?EXEC ?CSP SMUDGE
8 IMMEDIATE : 0 39 i : Z 3A ; : DF 3B i : NOT 8 -
9 EFI 3C i : EF2 3D; : EF3 3E i : EF4 3F i

10 ?FAULT OVER FFOO AND OVER FFOO AND - 5 ?ERROR i

11 IF, C, HERE 0 C, 2 i
12 ELSE, 2 ?PAIRS 30 C, HERE 1+ SWAP ?FAULT Cl HERE 0 C, 2 ;
13 ENDIF, ?EXEC 2 ?PAIRS HERE &WAP ?FAULT ci
14 BEGIN, ?EXEC HERE 1 i
15 UNTIL, C, 1 ?PAIRS HERE ?FAULT DROP C, i -->

SCR #8
o FIGFORTH 1802 ASSEMBLER 3)
1 BR, HERE 1+ ?FAULT DROP 30 C, C, i : LBR, CO C, , i
2 WHILE, C, 1 ?PAIRS HERE 0 C, 3 i
3 REPEAT, 3 ?PAIRS 30 C, HERE ROT ?FAULT C, 1+ SWAP ?FAULT Cl
4 AGAIN, 1 ?PAIRS 30 C, HERE 1+ ?FAULT DROP C, i

5 9INC3, 9 INC, 9 INC, 9 INC, i : 9DEC3, 9 DEC, 9 DEC, 9 DEC, ;
6 T/F, 9INC3, IF, 1 LDI, 9 STR, ELSE, 0 LDI, 9 STR, ENDIF,
7 9 DEC, 0 LDI, 9 STR, i
8 READ, INP, 9INC3, 9 STR, 9 DEC, 0 LDI, 9 STR,
9 SEND, 9 INC, 9 LON, STXD, IRX, OUT, LOX, STXD,

10 9DEC3,
11 is
12
13
14
15

12

PROGRAMMING TIPS - LESSON 1

by - Tbny Hill and Wayne Bowdish

This article is the first of a series on programming the 1802. It has been
a common request fran manbers that we include such a column in each issue,
so here's the first ones. We invited canment' s and suggestions for What YOU
would like to see in future articles.

I)SETTING UP A PROGRAM COUNTER
Almost all 1802 programs are written to use R(3) as the program counter.
However, the 1802 initializes with R(O) as for a program counter. 'Ib make
matters worse, the execute canmand of many monitors sets R(3) as the program
counter before running your program. What follows here is a piece of
relocatable code you can place at the start of your program that will allow
entry with either R(O) or R(3) as the program counter. With this code at the
start, you can no longer have to specify Whether register 0 or 3 is the PC
when a prognn is run.

00 F8 06 LDI START LOAD I..J:JN BYTE OF PROGRAM START LOCATION
02 A3 PLO R3 PUT IT INTO R(3).0 (JUMP IF R(3) IS PC)
03 90 GHI RO GET HIGH BYTE OF R(0) IF IT IS THE PC
04 B3 PHI R3 AND PUT IT IN R(3) •1
05 03 SEP R3 SET R(3) AS THE NEW PC
06 •• START: AND CONTINUE WITH THE REST OF THE PROGRAM

This code can be modified to wor~ with any entry register, at the expense of
the code being non-relocatable-

00 F8 07 LOI START LOAD I.J:JIl BYTE OF PROGRAM START LOCATION
02 A3 PLO R3 PUT IT INTO R(3).0 (JUMP IF R(3) IS PC)
03 F8 xx LOI START/256 GET HIGH BYTE OF THE START ADDRESS
05 B3 PHI R3 . AND PUT IT IN R(3).1,
06 03 SEP R3 SET R(3) AS THE NE.W PC
07 START: AND CONTINUE WITH THE REST OF THE PROGRAM

2) SIMULATED STACK INSTRUCTIONS
The 1802 has a number of instructions for handling a stack. These include
LOX , LOXA , STXD , IRX , INP and OUT. However, a number of useful stack
manipulation instructions found on other micro's are missing. This program
tip is designed to illustrate how to "Eake" these instructions when you are
writing code that does not know for sure Which register is the stack
pointer.

•

PSEUDO
INSTRUCTION

OEX
pop

STX

REOUIREO
1802 OP-COOES

LOX, STXD
IRX, LOX
STXD , IRX

FUNCTION
Decrement the stack pointer
Load 0 with top byte on stack

. Store 0 on top of stack

There may be other useful pseudo instructions (stack or otherwise), and we
will be happy to pr int any that are sent in. N:>te that the OEX instruction
destroys the 0 accumulator contents

NEXT ISSUE -
In the next IPSO, we will talk about LOOPs, and explain various way to
implement them, including a discussion on nested loops. Also planned for
future issues are tips on data structures, I/O programming and other
nonsense.

1~

ADDITIONAL NOTES ABOUT THE WINDOW PROGRAM

by- Tony Hill , RR 2 , Hamilton ,Ontario ,canada, LaN 2Z7

In response to inquirestabout my WI~v program (I.F. #24) I have listed a
number of additional ccmments below, most of which should probably have
been in the original article. I also neglected to credit Wayne Bowdish,
whose dissassembler code I modified for use in the program.

ADDITIONAL INTERESTING MEMORY LOCATIONS
02C4 69 An hINP lii instruction used to read the keyboard

in SWAP mode. Used to reset the keyboard when
swapping the WINDOW display back in.

0028 EO Video display RAM high order address byte
0030 E3 Video display RAM high order address byte + 3
003B E2 Video display RAM high order address byte + 2
0091 El Video display RAM high order address byte + 1
00E2 EO Video display RAM high order address byte
01B7 E2 Video display RAM high order address byte + 2
01C3 E2 Video display RAM high order address byte + 2
01C7 EO Video display RAM high order address byte
0357 EO Video display RAM high order address byte
0573 70 Video display RAM high order address byte shi fted r ight
0588 EO Video display RAM high order address byte
05C6 EO Video display RAM high order address byte
0614 El Video displ ay RAM high order address byte + 1
062E EO Video display RAM high order address byte

REGISTER USAGE
RO not used R8
Rl " R9
R2 stack pointer (grow dCMl'l) RA
R3 program counter RB
R4 SCRT call RC
R5 SCRT return RD
R6 SCRT address storage RE
R7 "2 byte subroutine callI! call RF

"2 byte subroutine call" return
RAM page pointer
General memory pointer
Video RAM pointer
Op-code high/low nibble storage
general purpose register

"
RF.l passes D for SCRT

INPUT INSTRUCTIONS AND FLAG LINES
When WINDOW finds an input instruction (or a branch on flag condition) it
stops whatever mode it was in and asks for the HEX value to use as the
required input data (or the status of the flag line - 0 or 1). You simply
type in your answer and press a carriage return to continue in whatever
mode you were in ~en the instruction was found.

ADDITIONAL NOTE FOR NON 6847 SYSTEMS
As a result of the number of inquires I have received about using WINDOW on
non-6847 display systems, I am currently writing a version that will run
on any display capable of accepting the printable ASCII characters and
CR/LF. While I will have to eliminate all graphics and make the output
fonnat simple, the basic functionality will be the same. In view of the
fact that the new program will lack the exciting graphics of the old one,
I am going to name the new program "PEEPHOLE". Watch for it around the
end of the year.

14

PERMUTATIONS AND COMBINATIONS IN TINY BASIC
by - K Schoedel , RR #1 , Erin , Ontario , Canada , NOB ITO

Everyone knows that Tiny Basic's math capability is severely limited. Only
integers can be used, and not very large ones at that. It is not even
practical to use Tiny Basic for many day to day calculations. Obviously, any
fonn of higher math is impossible.

•
Not so.
relatively
category.
questions,

There are many potentially useful operations that use only
small integers. Permutations and Combinations fall into this
'!hese useful fonnulas can help you answer many pressing everyday
like "How many ways can I arrange the 4116' s on my 64K board?".

The permutation fonnula provides the number of ways that r objects taken fran
a set of n can be arranged. The standard formula for this is:

n1
P = ------------

(n-r)

Where n is the total number of objects
and r is the number to be chosen and arranged

The main problem with calculating permutations in TINY BASIC is
that factorials are used. The factorial of a number, represented by an
exclamation mark (I) is equal to all of the integers fran one to that number
multiplied together. This quickly yields very large number s r even 81 is
outside Tiny's normal number range. However, it is not necessary to
calculate the entire factorial to do permutations. For example, in taking
three objects fran a group of ten we get:

101 10*9*8*7*6*5*4*3*2*1
P = -------------- = ----------------------- = 10*9*8 = 720

(10-3) 1 7*6*5*4*3*2*1

Since (7*6*5 ... *1) appears in both the numerator and the denaninator it can
be cancelled out and need not be calculated. This allows P(lO, 3} to be
calculated even though 101 is far outside Tiny Basic's number range.

The formula for combinations is very similiar. It is:

n!
C(n,r}= -------

r! (n-r) 1

This is very similiar to the formula used for calculating permutations.
The only difference is the extra r1 in the denaninator. The number of
combinations is therefore the same as the number of permutations divided by
the factorial of r . The program could in fact calculate combinations this
way, but it does not. Doing so would place a severe restriction on the range
of acceptable values. Instead, the program does the division by r1 piece by
piece in between mUltiplications. '!his increases by several times the number
of values that the combinations program can calculate.

Here are a fEM examples showing the use of this program.

: RUN
PERMUTATIONS OR COMBINATIONS? P
TOTAL NUMBER? 5
TAKE? 3
3 ITEMS-TAKEN FROM 5
AND ARRANGED ON 60 WAYS.

(How any ways can you arrange 3
of your 5 years of IPSO on
a bookshelf?)

•
PERMUTATIONS OR CCMBINATIONS? C
TOTAL NUMBER? 20
TAKE? 3
3 ITEMS CAN BE TAKEN FRCM 20
IN 1140 WAYS.

(How many ways can a committe of 3
people be chosen from 20 members?)

•

So, Tiny Basic isn't quite as useless with numbers as it is always made out
to be. Just because "Tiny can't handle things like that" is no reason to
ignore it; with suitable programs it really can be quite powerful.

PERMUTATIONS AND CCMBINATIONS IN QUEST TINY BASIC V3.0
10 PR
20 PR "PERMUTATIONS OR Ca1BINATIONS" ;
30 P=O
40 C=l
50 INPUT T
60 PR "TOTAL NUMBER"
70 INPUT N
80 M=N
90 PR "TAKE"

100 INPUT R
110 S=R
120 F=l
130 F=F*M
140 IF F<O GOTO 290
150 M=M-1
160 IF T=C GOSUB 240
170 IF M>N-R GOTO 290
180 IF S>l IF T=C GOSUB 240
185 IF S>l IF T=C GOT0180
190 PR R ; " ITEMS CAN BE TAKEN FRCM" N
200 IF T=P PR "AND ARRANGED "
210 PR "IN" ; F ; "WAYS."
220 GOTO 10
230 END
240 IF F/S*S< >F RETURN
250 F=F/S
260 S=S-l
270 IF S=O S=l
280 RETURN
290 PR "SORRY ••• THAT'S TOO lARGE"
300 END

16

SOFrWARE FOR THE ACE VDU BOARD

by - Tony Hill, RR 2 , Hamilton , Ontario , Canada , LaN 2Z7

A number of article containing software for memory mapped video displays,
including 6847 based units, have appeared in IPSO FACTO over the last few
years. However, a few club members have written in to complain that there was
nothing written specifically for the ACE VDU board. As a result, this
article has been written to provide a simple routine to allow the VDU board
to be used as an alpha-numeric output device.

First of all, I should say that I have taken the code for this routine almost
directly from the video output routine in NIES MONITOR - VERSION II and so
credit goes to Steve Nies as the original author. I have made same additions
and modifications to convert his routine to be a stand alone subroutine.

The software consists of a single SCRT callable subroutine that can be placed
at the start of any page in memory (RAM or PROM). It assumes that SCRT
passes the value you left in the D accumulator in R(F).l • Tb use the code,
simply CALL it at its first address with the character you want to display in
D. What could be easier?

A few other notes are in order. The code will clear the screen, initialize
the cursor AND SET THE SCREEN TO ALPHA MODE when you pass it a form-feed
character (OC HEX). Therefore, the first thing any program should do is send
a form-feed to initialize the display.

The routine will print all MC6847 ASCII characters, and also handle the
following ASCII control codes-

BS (08) - backspace
CR (on) - carriage return
LF (OA) - line feed
FF (OC) - fonn feed
HT (09) - tab (move right to next column of 8)
VT (OB) - vertical tab (move the cursor up one line)
-> (12) - right arrow (OC2) (move cursor right one column)

Other control codes are ignored.

The routine saves all registers that it uses. 'Iherefore, it will not
conflict with the register assignmment of any program it is used with. In
addition, the code passes back the same character passed to it, Which makes
it available for further processing.

A simple example program, to print the letter "A" in the upper left hand
corner of the screen might be-

•

0000
0002
0005
0007
OOOA

F8 DC
D4 xxOO
F8 41
D4 xxOO
00

LDI
+CALL
LDI
+CALL
IDL

#OC
VDUOUT
#41
VDUOUT

SET UP THE SCREEN WITH A FORMFEED
SEND TO VDU OUTPUT ROUTINE
LOAD THE ASCII CHARACTER "A"
SEND TO VDU OUTPUT ROUTINE
END

The final point you need to consider is that the code requires 2 bytes of RAM
(anywhere in memory) to store the current cursor position in. The code as
presented here is written to use the two bytes in the third page of the video
memory 2114' s as the storage location. \tItile this memory is not used by the
6847, if you wish to use it for anything else, you will have to modify t.he
code accordingly (the values labeled CURSAV).

17
1 ;***
"I ;* ACE VDU BOARD OUTPUT ROUTINES *3 ;* FROM CODE WRITTEN BY - STEVE NIES *4 ;* MODIFIED BY - TONY HILL *e 5 ;**t****t*******6 :: EO 00 VDU: tEQL tEOOO ; START ADDRESS OF VIDEO RAM
7 ... n 00 CURSAV: tEQL tE300 ; CURSOR POSITION SAVE LOACATION
8 -- FF 00 CTLREG: tEQL tFFOO ; VIDEO MODE CONTROll ADDRESS
9

10 0000 98 VDUOUT: GHI R8 ; SAVE R(B)
11 0001 73 STXD ;
12 0002 88 GLO R8 ;
13 0003 73 STXD ;
14 0004 97 GHI R7 ; SAVE R(7)
15 0005 73 STXD ;
16 0006 87 GLO R7 ;
17 0007 73 STXD ;
18 0008 9F GHI RF ; CHECK FOR A FORMFEED CHARACTER
19 0009 FF OC SMI tOC ;
20 OOOB 32 BE BZ FF ; PROCESS IMHEDIATLY IF FOUND
21 OOOD Fa E3 LDI CURSAV1256 ; R(7) -) CURSOR SAVE LOCATION
22 OOOF B7 PHI R7 ;
23 0010 F8 00 LDI CURSAV ;
24 0012 A7 PLO R7 ;
25 0013 47 LDA R7 ; SET R(8) -> CURSOR POSITION
26 0014 BB PHI R8 ;
27 0015 47 LDA R7 ;
28 0016 A8 PLO R8 ;
29 0017 08 LDN R8 ; TURN THE CURSOR OFF
30 001B FA 7F ANI t7F ; MASK OFF INVERT BIT
31 001A 58 STR R8 r
32 001B 9F SKIP: GHI RF ; GET CHARACTER PASSED BY SCRT
33 001C FF 20 SMI t20 ; TEST FOR A CONTROL CHARACTER
34 001E 3D 64 BNF CNTl ; BRANCH IF IT IS ONE
35 0020 9F GHI RF ; OTHERWISE, GET IT AGAIN
36 0021 FA BF ANI tBF ; MASK OF GRAPHICS BIT 6
37 0023 58 STR R8 ; SAVE ON SCREEN
38 0024 18 NEXT: INC R8 ; MOVE THE CURSOR LEFT ONE SPACEe 39 0025 98 TEST: GHI R8 ; SCROLL SCREEN UP ONE lINE ?
40 0026 FF E2 SMI VDU1256+2 ;
41 0028 313 4A BNF FINISH ; BRANCH IF NOT
42 002A 88 GLO R8 ; OTHERWISE SAVE CURRENT CURSOR POSITION
43 002B 52 STR R2 ;
44 002C F8 EO LDI VDU1256 ; SET UP R(7) AND R(8) TO DO THE SCROLL
45 002E B7 PHI R7 .,
46 002F B8 PHI R8 ;
47 003C' F8 00 LDI VDU ;
48 0032 A8 PLO R8 ;
49 0033 F8 20 LDI VDU + t20 ;
50 003~5 A7 PLO R7 ;
51 0036 47 SCROLL: LDA R7 ; HOVE THE SCREEN UP A LINE
52 0037 5B STR R8 ;
53 0038 18 INC R8 ;
54 0039 97 GHI R7 ;
55 003A FF E2 SHI VDU1256+2 ;
56 ooac 3B 36 BNF SCROLL ;
57 003E F8 20 BLANK: LDI t20 ; BLANK OUT BOTTOM LINE
58 0040 58 STR R8 ;
59 0041 18 INC R8 ;
60 0042 88 GLO R8 ;
61 0043 3A 3E BNZ BLANK ;
62 0045 28 DEC R8 ;
63 0046 02 LDN R2 ; RESTORE THE CURRENT CURSOR POSITION
64 0047 FF 20 SMI 120 ;
65 0049 A8 PLO R8 ;
66 004A 08 FINISH: LIIN R8 ; TURN THE CURSOR ON
67 004B F9 80 ORI t80 ;
68 004D 58 STR R8 ;
69 004E F8 E3 LDI CURSAV/256 ; SET R(7) -) CURSOR SAVE POSITION
70 0050 B7 PHI R7 ;
71 0051 F8 oc. LDI CURSAV ;
72 0053 A7 PLO R7 ;

e 73 0054 98 GHI R8 ; SAVE CURSOR POSITION
74 0055 t:"~ STR R7 ;,J/

75 00'56 17 INC R7 ;
76 0057 88 GLO R8 ;
77 0058 57 STR R7 ;
78 0059 12 INC R2 ; RESTORE R(7)
79 005A 42 lDA R2 ;
80 005B A7 PLO R7 ;
81 005C 42 LDA R2 ;

18
1 005D 97 PHI R7 ;
2 005E 42 LDA R2 ; RESTORE R(B)
3 005F A8 PLO R8 ;
4 0060 02 LDN R2 ;
5 0061 B8 PHI R8 ;
6 0062 9F GHI RF ; RESTORE PASSED CHARACTER
7 0063 D5 +RETRN ;
8 ;
9 ;

10 0064 FB ED CNTL: XRI tED ; TEST FOR CONTROL CHARACTERS
11 0066 3A 6E BNZ LF ; ** CARRIAGE RETURN? **
12 0068 88 GLO R8 ; YES, SO HOVE CURSOR TO START OF LINE
13 0069 FA EO ANI tEO ;
14 006B A8 PLO R8 ;
15 006C 30 4A BR FINISH ;
16 006E FB 07 LF: XRI t07 ;
17 0070 3A 7C BNZ BS ; ** LINE FEED ? **
18 0072 88 GLO RB ; YES, MOVE CURSOR DOWN ONE LINE
19 0073 FC 20 ADI t20 ;
20 OC075 A8 PLO R8 ;
21 0076 98 GHI R8 ;
22 0077 7C 00 ADCI 00 ;
23 0079 B8 PHI R8 ;
24 007A 30 25 BR TEST ; GO SEE IF WE NEED TO SCROLL
25 007C FB 02 BS: XRI t02 ;
26 007E 3A 88 BNZ HT ; ** BACKSPACE ? **
27 0080 28 DEC RB ; YES, MOVE CURSOR BACK AND TEST FOR LIMIT
28 OOBl 98 EXIT: GHI RB ;
29 0082 FF EO SMI VDU12S6 ;
30 0084 3B 24 BNF NEXT ;
31 00B6 30 25 BR TEST ;
32 0088 FB 01 HT: XRI t01 ;
33 008A 3A 98 BNZ VT ; ** HORIZONTAL TAB ? **
34 008C 88 GLO RB ; YES -TAB OVER TO THE NEXT COLUMN
35 008D FC 08 ADI tOB ;
36 OOBF FA F8 ANI tFS ;
37 0091 A8 PLO RB ;
38 0092 9B GHI RB ;
39 0093 7C 00 ADCI too ; e40 0095 BB PHI RS ;
41 0096 30 25 BR TEST ; CHECK TO SEE IF WE NEED TO SCROLL
42 0098 FB 02 VT: XRI t02 ;
43 009A 3A BO BNZ DC2 ; ** VERTICAL TAB (OB) ? **
44 009C 88 GLO R8 ; IGNORE IT IF ON LINE 1
45 009D FF 20 SMI t20 ;
46 009F 33 A6 BDF UP ;
47 00A1 98 GHI R8 ;
48 00A2 FF E1 SMI tEl ;
49 00Ao4 3B 4A BNF FINISH ;
50 00A6 88 UP: GLO RB ; OTHERWISE MOVE UP ONE LINE
51 00A7 FF 20 SMI t20 ;
52 00A9 A8 PLO RB ;
53 OOAA 98 GHI R8 ;
54 OOAB 7F 00 5MBI tOO ;
55 OOAD B8 PHI RB ;
56 OOAE 30 4A BR FINISH ;
57 OOBO FB 19 DC2: XRI 119 ;
58 OOB2 32 24 BZ NEXT ; ** RIGHT ARROW (12,DC2) ? **
59 00Bo4 FB 16 XRI t16 ; ** HOME CURSOR? (04) **
60 00B6 3A 81 BNZ EXIT ; IGNORE IF NOT-INVALID CONTROL CODE
61 OOBB A8 PLO R8 ; OTHERWISE POINT CURSOR TO UPPER LEFT CORNER
62 00B9 F8 EO LDI VDU1256 ;
63 OOBB B8 PHI R8 ;
64 OOBC 30 4A BR FINISH ;
65 ;
66 OOBE F8 El FF: LDI VDU1256 +1 ; ** FORM FEED **
67 OOCO B8 PHI R8 ;
68 00C1 F8 FF LIII tFF ;
69 00C3 A8 PLO R8 ;
:'0 00C4 F8 FF LDI CTLREG1256 ; SET SCREEN TO ALPHA MODE
11 00C6 B7 PHI R7 ;
72 00C7 F8 02 LDI t02 ;
73 00C9 57 STR R7 ;
74 OOCA F8 20 CLEAR: LDI t20 ; CLEAR VIDEO MEMORY
75 OOCC 58 STR R8 ;
76 OOCD 28 DEC R8 ;
77 OOCE 98 GHI R8 ;
78 OOCF FF EO SMI VIIU1256 ;
79 00D1 33 CA BDF CLEAR ;
80 00D3 30 24 BR NEXT ; RESTORE CURSOR
81 .END

19

1802-Apple Keyboard Interface
~ -by J. Pottinger, 505 E. Lakeside Dr., Florence, Ala. U.S.A.,35630

Are you a home brew hacker? Do you have a hex key pad with keys that
bounce when a car pulls into the drive? Then you might use the simple fix
presented here. The hex key pad and circuit were presented by Thomas E.
Hutchinson KILOBAUD, November 1978.

The parts list for this project is pretty short. You will need a 555 timer
(wired as a one shot-see Figure 1), a 16 pin double ended DIP jumper cable
and a solderless breadboard or equivalent. Oh yes, don't forget the APPLE.
Unfortunately they don't grow on trees. I use the APPLE II PLUS with one
di sk dri vee

Interfacing is simple, just remove the four gates (IC's number 1, 2, 3 and
4) used to decode the key pad and wire pin 13 of each gate socket to the
appropriate annunciator on the APPLE game connector (see Figure 1 AN 0 to
AN 3). IC 10 can also be removed. The strobe from the APPLE is slowed by
the one shot that replaces the fifth gate of Hutchinson's circuit. This
still uses the key debouncer which isn't necessary, but seemed to be the
shortest route to success.

A software driver for this circuit is shown in the following listing. It
is written in Applesoft basic. The program makes a hex key pad from the
right side of the standard APPLE key board. The program accepts a nibble
at a time from the keyboard and places them in APPLE memory and the
registers of the hex input circuit on the ELF. A simple subroutine should
allow programs entered this way to be saved to disk and stored for later
down loading to the ELF.

One problem with this circuit has surfaced. The debounce circuit limits
the speed of transfer. There is no doubt a simple fix, but I haven't had
the opportunity to try anything yet. Maybe someone is ACE with simular
interests can enchance this simple circuit or maybe a simple compiler for
one page ELFs or maybe •••
1 GOTO 1000: REM SUBROUTINES FOR INTERPRETING KEYPAD FOLLOW
2 PRINT "ERROR, REPEAT ENTRY": GOTO 300
3 GOTU 2000
17 END
22 PRINT" ";: POP: GOTO 300
34 A 2: B$ "2": GOSUB 5080: RETURN
36 A 3:B$ "3": GOSUB 5080: GOSUB 5140: RETURN
44 A 12:B$.. "e": GOSUB 5100: GOSUB 5120: RETURN
45 A '"' 13:B$ "0": GOSUB 5100: GOSUB 5120: GOSUB 5140: RETURN
46 A ... 14:B$ "E": GOSUB 5100: GOSUB 5120: GOSUB 5080: RETURN
47 A .. 15:B$.. "F": GOSUB 5100: GOSUB 5120: GOSUB 5080: GOSUB 5140: RET
URN
62 A 4:B$.. "4": COSUB 5100: RETURN
63 A 10:B$.. "A": GOSUB 5120: GOSUB 5080: RETURN
64 A .. 5:B$... "5": GOSUB 5140: GOSUB 5100: RETURN
65 A .. 6:B$ "6": GOSUB 5100: GOSUB 5080: RETURN
66 A .. 7:B$... "7": GOSUB 5100: GOSUB 5080: GOSUB 5140: RETURN
67 A ... I:B$.. "1": GOSUB 5140: RETURN
68 A .. O:B$.. "0": RETURN
69 A ... 11:B$.. "B": GaSUB 5120: GaSUB 5080: GaSUB 5140: RETURN
75 A .. 9:B$.. "9": GaSUB 5120: GOSUB 5140: RETURN
79 A ... 8:B$.. "8": GaSUB 5120: RETURN

•
BY J M POTTINGER
QCAB
C/O ANDERSON COMPUTERS
FLORENCE ,AL 35630

COTO 2000
300
STROBE OUTPUTS

110 REM
115 REM
120 REM HEX KEY PAD
140 REM USINC KEYS
150 REM ************
160 REM *6 7 8 9 *
170 REM * Y U I 0 *
180 REM * H J K L *
190 REM * N M , .*
200 REM ************
210 REM AS
220 REM ************
230 REM *C D E F *
240 REM * 8 9 A B *
250 REM * 4 5 6 7 *
260 REM * 0 1 2 3*
270 REM ************
289 REM CONVERTS KEYS TO HEX
290 ON ASC (A$) - 10 COSUB 2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,17,2,2,2,2
,22,2,2,2,2,2,2,2,2,2,2,2,34,2,36,2,2,2,2,2,2,2,44,45,46,47,2,2,2,2,2,2
,2,2,2,2,2,2,2,2,62,63,64,65,66,67,68,69,2,2,2,2,2,75,2,2,2,79
291 RETURN
299 REM MAIN ROUTINE
300 CET A$
310 COSUB 290: GOSUB 500
320 Bl • A * 16
325 PRINT B$;
330 CET A$: GOSUB 290: GOSUB 500
340 B2 • A
350 B .. Bl + B2
355 PRINT B$j
360 POKE ADR,B
370 ADR • ADR + 1
380 ICT • ICT + 1
390 IF ICT • 8 THEN
400 PRINT" ";: GOTO
500 cosun 5060: REM
510 FOR I .. 1 TO 200
520 NEXT I
530 COSUB 5020: REM CLEAR ALL OUTPUTS
540 RETURN
1000 GOSUB 5200: GOSUB 3000: REM INIT SUB FOR HEX OUTPUT
1005 INPUT "INPUT THE STARTING ADDRESS ";ADR
1010 HOl-IE
1040 COTO 2000
1999 REM POKES ADDRESS IN ROUTINE FOR HEX OUTPUT
2000 PRINT: POKE 768,ADR / 256
2010 POKE 769,(ADR - PEEK (768) * 256)
2020 CALL 770: REM HEX OUTPUT ROUTINE
2030 PRINT" ";
2040 ICT .. 0
2050 GOTO 300
3000 FOR I .. 1 TO 10
3010 READ f)

3020 POKE 769 + I,D

21

5060
5160
5080
5170
5100
5180
5120
5190
5140
END

GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
THEN

NEXT I
PRINT "THE END OF ARRAY STORAGE IS ";
PRINT PEEK (110) * 256 + PEEK (109)
RETURN
DATA 173,0,3,174,1,3,32,65,249,96
REM CLEAR ALL OUTPUTS
FOR I - 0 TO 3
POKE LAN(I),O
NEXT I
RETURN

X - PEEK (STROBE)
RETURN
POKE HAN(l),O: REM BIT 1- 2
RETURN
POKE HAN(2),0: REM BIT 2- 4
RETURN
POKE HAN(3),0: REM BIT 3- 8
RETURN
POKE HAN(O),O: REM BIT 0- 1
RETURN
POKE LAN(O),O: RETURN
POKE LAN(1),0: RETURN
POKE LAN(2),0: RETURN
POKE LAN(3) ,0: RETURN

STROBE - - 16320
DIM LAN(3),HAN(3)

LAN(O) - - 16296
HAN(O) - - 16295
LAN(l) - - 16294
HAN(l) - - 16293
LAN(2)· - 16292
HAN(2) - - 16291
LAN(3)" - 16290
HAN(3) • - 16289

RETURN
GOSUB 5010
GET A$
IF A$ • "s " THEN
IF A$.. "4" THEN
IF A$ - "1" THEN
IF A$ - "5" THEN
IF A$ • "2" THEN
IF A$ • "6" THEN
IF A$ • "3" THEN
IF A$ - "7" THEN
IF A$ • "0" THEN
IF A$ - eHR$ (3)
Gora 5310
GOSUB 5010
FOR I • 0 TO 3
POKE LAN(I),O
GET A$
POKE HAN(I),O
GET A$
NEXT I

3030
3035
3036
3040
3050
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5295
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490

RESE.T

6

AN¢ /S"GoC ¥I
CD

'fOSO
API 1'/ Gc 171 CD)/0 crl ~

lIo'!2

AN2 13&c_ I Ij IIL--I// 1/2

(1)
l.....
~

(b) ~

()

(5) h.

~v

D~~
JJ6

.----11 ~ nCD

ijrY18

AN3 /2G:.C I I I/~ I /W l 12

81 S-
-!7~

s

lJ1 2H If

CO
'IOSo

71 CD ~r I/o
if0'12

/31 //~I 112

tv
~

Jv

SGrC

I

(3)
I

(if)

(2) 4-
....J
lij

(I)
<O~I1Ai-

0 I",o",f oI1E;<1o/Cy P/foTEcT

h Sw;t-c.i.. NOI\'HA L T6

(0) '/023 rJl1E)10~Y ELF
ADVAAlCE

ir:
rz.
'/3

b.

'I
+Sv

6
L11/6 8W

7

!Ji:.

e

RE~E.T rsv ~ FIG-LIRE I

e -

23

1802 mini-DISASSEMBLER

ANOTHER DISASSEMBLER FOR THE 1802

W. BOWDISH

A long time ago (about 1978) I needed a small disassembler for a
monitor which I was writing. The requirements where as follows:

- must be small, about 2 pages, since the monitor was only 2k bytes
- must print the output on a terminal
- must display the instruction address, mnemonic and operand fields
- should be a SCRT callable subroutine
- must output a specified number of instructions

This article describes a slightly modified version of that original
disassembler. Since the original version was written, the routine has
been modified and used in several applications (see T. Hills window
program for a distant relative of this version).

OPERATION

The routine is a SCRT callable subroutine. On entry it expects some
data in registers. R8 is assumed to contain a count of the number of
instructions (not bytes) to be disassembled. R9 contains the start
address of the instructions to be processed. In addition to these 2
registers, R7, RB and RC are used.

The method of disassembling instructions is fairly straight forward.
For each instruction to be disassembled, the high nibble is used to
index into a table (HIGTAB) which contains the address (low byte
only) of a routine which will process that instruction type. Usually
the instruction processing is straightforward, but much of the code
is used to test for and handle the special cases.

The last two pages of the listing are tables which contain the ASCII
mnemonics for the instructions. These tables contain either 3-byte or
4-byte entries. Note that the last byte of each entry has the high bit
set. The routine 'STBXFR ' copies these mnemonics from the table to the
output device until a character with bit 7 set is encountered.

If you ever have a need for a small disassembler then this little
routine may be of some use.

RCA-1802 MINI-DISASSEMBLER RC1802-V01D DIS2.RCA 23-SEP-82 21:14:51 PAGE

EXT ERN A L R 0 UTI N E S

TTYOUT - ROUTINE TO OUTPUT A CHARACTER TO THE TERMINAL.
THE CHARACTER IS PASSED IN THE D-REGISTER

DIS A S M

CDP1802 MINI-DISASSEMBLER

THIS SUBROUTINE DISASSEMBLES A SPECIFIED NUMBER OF
INSTRUCTIONS AND PRINTS THEM ON THE TERMINAL. THE
CALLING SEQUENCE IS AS FOLLOWS:

.SLW

STANDARD
SPACING COUHT
NUMBER OF INSTRUCTIONS TO PROCESS
AI)IlRESS OF INSTRUCTIONS
** NOT USED **
POINTER TO DATA TABLE PAGE
HIGH NIBBLE OF INST. BEING PROCESSED
LOW NIBBLE OF INST. BEING PROCESSED
** NOT USED **
** NOT USED **
~fE2o¥YuS~~T*~OUTINES TO PASS D-RE.

tV
N:>o

USE AGE

; R8 CONTAINS A COUNT OF THE NUMBER
; OF INSTRUCTIONS TO PROCESS
; R9 CONTAINS THE STARTING ADDRESS
; OF THE CODE TO BE DISASSEMBLED

REG 1ST E R

DISASM

t0100

• • •

• • •

+CALL

RO-R6
~ R7

R8
R9
RA
RB
RC.HI
RC.LO
RD
RE
~~:~O

.ORG

;,
;
;,
;
;
;
;·,;
;
;
;
;
;
;
;·,
;
;
;
;
;
;
·t,
;
;
;
;
;
;
i,
;

= 01 001
2
3
4
:,
6
7
8
9

10
11
12

l~
15
16
17
18
19
20
21
22
23
24
')1:'
_..J

26
27
28

~6
31
32
33
34
35
36
~~
39
40

e ·e -

e e e
RCA-1802 MINI-DISASSEMBLER RC1802-V01D DIS2.RCA 23-SEP-82 21:14:51 PAGE 5

~

CJ1

*** SEE NOTE ABOVE ***

; SET UP THE SPACING COUNTER
;
j\
; PUT LOW NIBBLE OF INSTRUCTION IN RC.LO
; /

;IDLE INSTRUCTION?
;\
; \
; PUT HIGH NIBBLE OF INSTRUCTION IN RC.HI
; /
; /
;\
; INDEX INTO HIGH NIBBLE BRANCH TABLE
; AND BRANCH TO INSTRUCTION HANDLER
j /

j\
; POINT RB.HI TO THE DATA TABLE PAGE. /
~ OUTPUT <CR><LF>

OUTPUT INSTRUCTION ADDRESS

PROCESSING

tOD
TTYOUT
tOA
CHROUT

R3
1

~~LF
F'RTADR

6
R7
R9
'lOF
RC
R9
IDLE

R8 ; DECREMENT THE INSTRUCTION COUNT
R8 j\
DISASM ; IF ALL INSTRUCTIONS HAVE NOT BEEN
R8 ; PROCESSED THEN LOOP FOR THE NEXT
DISASM j/

CARRIAGE ROUTINE, LINE FEED TO TERMINAL

IF YOUR TERMINAL AUTOMATICALLY OUTPUTS A LINE
FEED AFTER A CARRIAGE RETURN, THEN CHANGE THE
BYTE AT LABEL $$$.1 TO A 'lD5.

LDI
PLO
LDN
ANI
PLO
LDA
BZ
SHR
SHR
SHR
SHR
PHI RC
ADI HIGTAB
F'LD RB
LDN RB
PLO R3

OF INSTRUCTION

GHI
ADI
~~~LL
tCALL

DEC
GLO
BNZ
GHI
BNZ

OUTPUT

NOTE:

LDI
tCALL

$$$.1: LDI
BR
.SLW

i,
,,,
;,
CRLF:

j
j END
;
ENDINSt

DISASSEMBLER ENTRY POINT

.,
; INSTRUCTION DECODER
;
DECODE:

,
; LOOP BACK HERE FOR EACH INSTRUCTION
;.,
DISASMt

F8 OD
D4 00 25
F8 OA
30 38

28
88
3A 00
98
3A 00

93
FC 01
F,~ 0·1 25
D4 01 2E

0125
0125
0127
012A
012C

011E
011E
011F
0120
0122
0123

12
13
14
15 010A
16 010A F8 06
17 010C A7
18 010D 09
19 010E FA OF
20 0110 AC
21 0111 49
22 0112 32 8B
23 0114 F6
24 0115 F6
25 0116 F6
26 0117. F6
27 0118 BC
28 0119 FC 08
29 011B AB
30 011C OB
31 011[1 A3
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
117
48
49
50
51
52
53

1.
2
:3
4
5
6 0100
7 0100
8 0101

16 818~
11 0107



RCA-1802 MINI-DISASSEMBLER RC1802-V01D DIS2.RCA 23-SEP-82 21:14:51 PAGE 6

8138
138

013B

1
2

e

0145
0145
0147
014A
014B
014C
014E

l\:l
en

-

;\
; CHECK FOR SKP INSTRUCTIONS
;/
i GO 10 DISPACTHER, - NDEX INTO TABLETABLE

OUTPUT OPERAND

CHECK IF LONG BRANCH
NO - THEN FINISHED
YES - OUTPUT REST OF ADDRESS

NO - PRINT AN "L"
; DECREMENT SPACER COUNT
; GET LOW NIBBLE AND
; CHECK FOR LONG SKIPS
; SKIP INSTRUCTION~

; GET HIGH NIBBLE
; GOTO DISPATCHER
; - INDEX INTO TABLE

- OUTPUT REG. NUMBER
LOOP FOR NEXT INSTRUCTION

OUTPUT HIGH BYTE OF ADDRESS
; OUTPUT LOW BYTE OF ADDRESS

OUTPUT A SPACE TO SEPERATE
THE ADDRESS AND MNEMONIC

ROUTINE - CALL FROM VARIOUS PLACES

e

RC
8
SKIP
~~b~~~,SBRTAB

HEXBYT
RC
tOc
ENDINS
HEX010
END INS

RC
UTLSUB
INDEX3,REGTAB
REGSYM
END INS

R9
HEX020
R9
HEX020
t20

.BYTE
GHI
ANI
BZ
+CALL
BR
.SLW

GLO
XRI
BZ
~~~Tt

GHI
+CALL
.BYTE
.BYTE
BR

GHI
+CALL
GLO
+CALL
LDI

LDI 'L
+CALL TTYOUT
DEC R7
GLO RC
ANI t04
BNZ LSKP

SHORT BRANCH INSTRUCTIONS

LONG BRANCH INSTRUCTIONS

DECODED INSTRUCTION OUTPUT RbuTINES

REGISTER TYPE INSTRUCTIONS (XXX RN

;
;
;
LBRS:

;
;
;
;
;
REG:

;
;
;
SBRS:

;
; CHARACTER OUTPUT
;
CHROUTt

+CALL TTYOUT
+RETRN

; PRINT THE INSTRUCTION ADDRESS
;
PRTADR:

F8 4C
D4 00 25
27
8C
FA 04
3A 65

8C
FB 08
32 94
D4 01 C5
C9
48
E4
9C
FA OC
32 1E
D4 01 E9
30 1E

D4 00 25
D5

9C
D4 01 C6
C9
18
F8
30 1E

99
D4 01 EA
89
[14 01 EA
F8 20

81~8
0151
0153
0155
0158
0159
015A
015B
015C
015E
0160
0163

013C
013C

23 013D
24 0140
25 0141
26 0142
27 0143
28
29
30
31
32
33
34
35
36
37
38
39
40
4~4.:-
43
44
45
46
47
48
49
50
51
52
53
54

3 012E
4 012E
5 012F
6 0132
7 0133
8 0136
9

10
11
12
13
14
15
16
17
18
19
20
21
22

e e e
RCA-1802 MINI-DISASSEMBLER RC1802-V01D DIS2.RCA 23-SEP-82 21:14:51 PAGE '7

1
2 ; lONG SKIP INSTRUCTION
3 ;
4 0165 8C lSKP: GlO RC ; GET lOW NIBBLE
5 0166 FF 04 SMI 4 ; SET UP OFFSET
6 0168 AC PlO RC
7 0169 FF 04 SMI 4 ; FIRST FOUR lSKP'S?
8 016B 33 6E BPZ lSKPl ; NO - OFFSET OKAY
9 016D 8C GlO RC . YES - RESTORE OFFSET,

10 016E [14 01 C6 lSKP1: +CAll UTlSUB ; CAll DISPATCHER
11 0171 C9 .BYTE INDEX3,lBRTAB ; - INDEX INTO TABLE AND O~TPUT

12 0172 78
13 0173 CO .BYTE OUTXIT ; END
14 ;
15 ; t6X INSTRUCTIONS
16 ;
17 0174 8C lOS: GlO RC ;\ GET lOW NIBBLE
18 0175 32 91 BZ IRX ; IS IT IRX~~

19 0177 FF 08 SMI 8
20 0179 32 8E BZ IllEGl ; UNUSED OPCODE?
21 017B 3B 81 BNF INP
22 017D AC PlO RC
23 017E F8 2D L[II SPEINP
24 0180 C8 lSKP
25 8181 F8 2A INP: lDI SPEOUT
26 183 AB PlO RB
27 0184 D4 01 C6 +CAll UTlSUB ;CAll DISPATCHER tv

28 0187 DO .BYTE STBXFR ; - OUTPUT NMEUMONIC ROUTINE -.J

29 0188 FD .BYTE ~U~¥IG30 0189 30 lE BR N I NS
31 .SlW

RCA-1B02 MINI-DISASSEMBLER RC1B02-V01D DIS2.RCA 23-SEF'-B2 21:14:51 F'AGE B

1 ;
2 ; IDLE INSTRUCTION
3 ;
4 01BB FB 21 IDLE: LDI SF'EIDL
5 01BD C8 LSKF'
6 ;
7 ; ILLEGAL OF'CODE
B ;
9 01B~ FB 45 ILLEGL: LDI NOTUSD

10 019 CB LSKF'
11 ;
12 ; IRX INSTRUCTION
13 ;
14 0191 FB 3C IRX: LDI SF'E I RX
15 0193 CB LSKP
16 ;
17 ; SHORT SKIF' INSTRUCTION
lB ;
19 0194 FB 60 SK IF': LDI SF'ESKF'
20 0196 AB F'LO RB
21 0197 D4 01 C6 +CALL UTLSUB ; CALL DISPATCHER
22 019A DO .BYTE STBXFR ; - OUTPUT NMEUMONIC
23 019B CO .BYTE OUTXIT . - END,
24 ;
'j<:"

! t7X INSTRUCTION.:....1

26 ,
27 019C BC MIS1: GLO RC ; GET LOW NIBBLE t-.:l28 019[1 FE SHL ; X4 00
29 019E FE SHL
30 019F [14 01 C6 +CALL UTLSUB ; CALL DISPATCHER
31 01A2 CD .BYTE INDEX4,MS1TAB ; - INDEX INTO TABLE AND OUTPUT
32 01A3 90
33 01A4 C3 .BYTE UTLXIT
34 01A5 FF OC SMI toc ; NEED AN OF'ERAND?
35 01A7 3B lE BM ENDINS ; NO - THEN BRANCH
36 01A9 FF 02 SMI 2
37 01AB 30 B9 BR MS1RTN ; MAYBE •••
38 ;
39 ; tFX INST
40 ;
41 01AD MIS2:
42 01AD [14 01 C5 +CALL UTLGLC ; CALL DISF'ATCHER
43 01BO C9 .BYTE INDEX3,MS2TAB ; - INDEX INTO TABLE AND OUTF'UT
44 01Bl DO
4~ 81t3 ~~ OB s~'fTE ~TLXIT i - ~NR, NEE 1 N OF'ERAND?
47 01B5 3B lE BM ENDINS ; NO
48 01B7 FF 06 SMI 6
~6 8I~~ ~~ or E4

MS1RTN:
~tALL R~~~~1 i ~~s : OUTF'UT OF'ERAND,

51 01 BE 30 lE BF, ENDINS
52 .SLW

e e e

e
RCA-1802 MINI-DISASSEMBLER RC1802-V01D

e
DIS2.RCA 23-SEP-82 21:14:51

-- PAGE ·9

1
2 ; DISSASEMBLER UTILITIES
3 ·,
4 01CO OUTXIT: ; EXIT FROM UTILITIES TO END PROCESSING
5 01CO F8 lE LDI END INS
6 01C2 A6 PLO R6
7 01C3 8C UTLXI n GLO RC ; NORMAL EXIT FROM UTILITIES
8 01C4 D5 +RETRN
9 ·r10 , ENTRY POINTS TO UTILITY ROUTINES

11 ·,
12 ; UTLGLC - ENTER AND PUT RC.LO IN D-REG
13 ; UTLSUB - NORMAL ENTRY POINT
14 ;
15 01C5 UTLGLC:
16 01C5 8C GLO RC
17 01C6 UTLSUB:
18 01C6 52 STR R2 ; SAVE CONTENTS OF D-REG
19 01C7 46 LDA R6 ; GET ROUTINE ADDRESS
20 01C8 A3 F'LO R3 ; AND BRANCH TO THE ROUTINE
21 ;
22 ; CALC. OFFSET INTO 3-BYTE TABLES
23 ·,
24 01C9 FO INDEX3: LDX jCALCULATE AND LOAD TABLE ADDRESS
25 01CA FE SHL
26 01CB F4 ADD
27 01CC 52 STR R2 t-:>

28 j CD

29 ; INDEX INTO APPROPRIATE TABLE
30 ;
31 01CD 46 INDEX4: LDA R6 ;\
32 01CE F4 ADD ; POINT RB TO START OF TABLE ENTRY
33 01CF AB PLO RB ; /
34 ;
35 ; OUTPUT INSTRUCTION MNEMONIC
36 ;
37 01DO OB STBXFR: LDN RB ; OUTPUT DATA
38 01111 D4 00 25 +CALL TTY OUT
39 01D4 27 DEC R7 ; DEC. SPACER COUNT
40 01D5 4B LDA RB ;\
41 0106 FE SHL ; CHECK FOR LAST CHAR IN ENTRY
42 01D7 3B DO BNF STBXFR ; /
43 01[19 STBX$l:
44 01D9 F8 20 LDI *20 ; \
45 01DB D4 00 25 +CALL TTYOUT ; \
46 01DE 27 DEC R7 ; SPACE OVER TO OPERAND FIELD
47 01DF 87 GLO R7 ; /
48 OlEO 3A II9 BNZ STBX$l ;;
~9 01E2 30 C6 BR UTLSUB
..,0 .SLW

RCA-1802 MINI-DISASSEMBLER RC1802-V01D DIS2.RCA 23-SEP-82 21:14:51 PAGE 10

1 ;
2 ; OUTPUT HEX BYTE PRECEEDED BY I t: I

3 ;
4 01E4 HEXBYT:
5 01E4 F8 23 LDI 't:
6 01E6 D4 00 25 +CALL TTYOUT
7 ;
8 ; OUTPUT HEX BYTE POINTED TO BY R9
9 ;

10 01E9 HEX010:
11 01E9 49 LDA R9
12
l~ l OUTPUT CONTENTS OF D-REG,
15 OlEA HEX020:
16 OlEA 73 STXD
17 01EB F6 SHR
18 01EC F6 SHR
19 01Ert F6 SHR
20 01EE F6 SHR
21 01EF D4 01 FE +CALL HEXASC
22 01F2 60 IRX
23 01F3 FO LDX
24 01F4 FA OF ANI t:OF
25 01F6 30 FE BR HEXASC
26 ;
27 ; OUTPUT I RI FOLLOWED BY A REGISTER NUMBER
28 ;

w

29 01F8 F8 52 f\EGSYM: LIII 'R ; OUTPUT AN "R"
0

30 01FA [14 00 25 +CALL TTY OUT
31 01FD 8C OUTDIG: GLO RC
32 ;
33 ; HEX TO ASCII OUTPUT
34 ;
35 01FE HEXASC:
36 01FE FF OA 8MI 10
37 0"00 C7 L~NF
38 0~01 FC 07 A II 7
39 0203 FC 3A ADI t:3A
40 0205 CO 01 38 LBR CHROUT
41 .SLW

e e --

e e It
RCA-1802 MINI-DISASSEMBLER RC1802-V01D RCA-1802 MINI-DISASSEMBLER RC1802-V01D .£1

1 ; TABl.E OF ADDRESSE 1 ; BRANCH INSTRUCTIONS (AN':> ; 2 ;:5 0208 3C HIGTAB: .BYTE REG 3 0248 42 52 SBRTAB: .ASCII \BR\
4 0209 3C .BYTE REG 4 024A AO .BYTE , !:l:805 020A 3C .BYTE REG 5 024B 42 51 .ASCII \BQ\6 020B 50 .BYTE SBRS 6 024£1 AO .BYTE , !:l:807 020C 3C .BYTE REG 7 024E 42 5A .ASCII \BZ\8 020D 3C .BYTE REG 8 0250 AO .BYTE , !1:80
9 8"8E ~~ :E~tfr A£~1 9 0251 42 44 .ASCII \BD\10 2 F 10 0253 C6 .BYTE 'F!:l:8011 0210 3C .BYTE REG 11 0254 42 31 .ASCII \Bl\12 0211 3C .BYTE REG 12 0256 AO .BYTE , !:l:8013 0212 3C .BYTE REG 13 02~7 42 32 .~SYII \B t \14 0213 3C .BYTE REG 14 02;;9 AO • Y E ' . :1:8015 0214 45 .BYTE LBRS 15 025A 42 33 .ASCII \B3\

16 0215 3C .BYTE REG 16 025C AO .BYTE , !:l:8017 0216 3C .BYTE REG 17 02~D 4" 34 .ASyII \B4\18 0217 AD .BYTE MIS2 18 02,JF AO .BY E ' ! :1:80
19 ; 19 0260 53 4B SF'ESKP: .ASCII \SK\
20 ; MOSTLY REGISTER T 20 0262 DO .BYTE 'P!:l:80
21 .

21 02Z3 42 4E .ASf~I \BN\, .
22 0218 4C 44 REGTAB: .ASCII \LD\ 22 02 5 D1 .BY 'Q!:l:80
23 021A CE .BYTE 'N!:l:80 23 0266 42 4E .ASCII \BN\24 021B 49 4E .ASCII \IN\ 24 0268 DA .BYTE 'Z!:l:8025 021D C3 .BYTE 'C!:l:80 25 0269 42 4E .ASCII \BN\26 021E 44 45 .ASCII \DE\ 26 026B C6 .BYTE 'F!:l:80
27 0220 C3 .BYTE 'C!:l:80 27 026C 42 4E .ASCII \BN\ w28 0221 49 44 SF'EIDL: .ASCII \ID\ 28 026E Bl .BYTE 'l!:l:80 I-'"29 0223 CC .BYTE 'L!:l:80 29 026F 42 4E .ASCII \BN\30 0224 4C 44 .ASCII \LD\ 30 0271 B2 .BYTE '2!:l:8031 0226 C1 .BYTE 'AI:l:80 31 0272 42 4E .ASCII \BN\32 0227 53 54 .ASCII \ST\ 32 0274 B3 .BYTE '3!:l:8033 0229 [12 .BYTE 'R!:l:80 33 82~5 42 4E .AS~~I \BN\34 022A 4F 55 SF'EOUT: .ASCII \OU\ 34 2 7 B4 .BY '41:1:8035 022C D4 .BYTE 'T!t80 35 ;
36 022D 49 4E SF'EINF': .ASCII \IN\ 36 . LONG SKIP INSTRUCTIONS,
37 022F DO .BYTE 'F'!t80 37 ;38 0230 47 4C .ASCII \GL\ 38 0278 4E 4F LBRTAB: .ASCII \NO\39 0232 CF .BYTE '01:1:80 39 027A DO .BYTE 'F'!t8040 0233 47 48 .ASCII \GH\ 40 027B 53 4E .ASCII \SN\
41 8':>~3 ~6 4C :~~tII '~!:l:80 41 027D [11 .BYTE 'Qlt8042 ~ \ 'L\ 42 027E 53 4E .ASCII \SN\43 0238 CF .BYTE 'O!:l:80 43 0280 IIA .BYTE 'Z!t8044 0239 50 48 .ASCII \F'H\ 44 0281 53 4E .ASCII \SN\45 023B C9 .BYTE 'I!t80 45 02~3 ~~ 49 :~~t!I

'F!t8046 023C 49 52 SPEIRX: .ASCII \IR\ 46 02 4 \SI\47 023E D8 .BYTE 'XI:l:80 47 0286 C5 .BYTE 'E!t8048 023F 53 45 .ASCII \SE\ 48 0287 53 51 .ASCII \SO\49 0241 DO .BYTE 'f'! t80 49 0289 AO .BYTE , !t8050 0242 53 45 .ASCII \SE\ 50 028A 53 5A .ASCII \SZ\51 0244 D8 .BYTE 'X!:l:80 51 028C AO .BYTE , !t8052 0245 2A 49 NOTUSD: .ASCII *1\ 52 028[1 53 44 .ASCII \SD\53 0247 CC .~YTE 'L!t80 53 028F C6 .~YTE 'F!t8054 • LW 54 • LW

RCA-1802 MINI-DISASSEMBLER RC1B02-V01D RCA-1802 MINI-DISASSEMBLER RC1802-V01D [I:

1 ; 1
2 ; t7X INSTRUCTIONS 2 ; tFX INSTRUCTIONS
3 ; 3 ;
4 0290 52 45 54 MS1TAB: .ASCII \RET\ 4 02DO 4C 44 MS2TAB: .ASCII \LD\
5 0293 AO

:~~tiI ' 1~~O 5 02D2 DB .BYTE 'X!t80
6 0294 44 49 53 \I1t 6 02D3 4F 52 .ASCII \OR\
7 0297 AO .BYTE , !t80 7 02[15 AO .BYTE , !tBO
8 0298 4C 44 58 .ASCII \LDX\ 8 02D6 41 4E .ASCII \AN\
9 029B C1 .BYTE 'A!tBO 9 02D8 C4 .BYTE 'D!t80

10 029C 53 54 58 .ASCII \STX\ 10 02D9 58 4F .ASCII \XO\
11 029F C4 .BYTE ' [I! t80 11 02DB D2 .BYTE 'R!tBO
12 02AO 41 44 43 .ASCII \AIIC\ 12 02DC 41 44 .ASCII \AD\
13 02A3 AO .BYTi ' ! tBO 13 02[IE C4 .B~TE 'R!t8014 02A4 53 44 42 .ASC I \SIIB\ 14 02DF 53 44 .A CII \ D\
15 02A7 AO .BYTE , !t80 15 02E1 AO .BYTE , !tBO
16 02A8 53 48 52 .ASCII \SHR\ 16 0?E2 53 4B .ASCII \SH\
17 02AB C3 .BYTE 'C!t80 17 02E4 D2 .BYTE 'R!tBO
18 02AC 53 4D 42 .ASCII \SMB\ 18 02E5 53 4D .ASCII \SM\
19 02AF AO .BYTE , !tBO 19 02E7 AO .BYTE , !t80
20 02BO 53 41 56 .ASCII \SAV\ 20 02E8 4C 44 .ASCII \LIt\
21 02B3 AO .BYTE , !tBO 21 02EA C9 .BYTE 'I!t80
22 02B4 4D 41 52 .ASCII \MAR\ 22 02EB 4F 52 .ASCII \OR\
23 02B7 CB .BYTE 'K!t80 23 02ED C9 .BYTE 'I!t80
24 02B8 52 45 51 .ASCII \REO\ 24 02EE 41 4E .ASCII \AN\
25 02BB AO .B~Tr ' ! a 8 0 25 02F~ C9 .B~TE 'I!tBO
26 02BC 53 45 51 .A C I \SE \ 26 02F 58 52 .A CII \XR\
27 02BF AO • BYTE . , !tBO 27 02F3 C9 .BYTE 'I!t80 co28 02CO 41 44 43 .ASCII \ADC\ 28 02F4 41 44 .ASCII \AD\ ~

29 02C3 C9 .BYTE 'I!t80 29 02F6 C9 .BYTE 'I!t80
30 02C4 53 44 42 .ASCII \SDB\ 30 02F7 53 44 .ASCII \SD\
31 02C7 C9 .BYTE 'I!t80 31 02F9 C9 .BYTE 'Ilt80
32 02C8 53 4B 4C .ASCII \SHL\ 32 02FA 53 4B .ASCII \SH\
33 02CB C3 .BYTE 'C!t80 3~ 8'")FE ~~ 4D :~~t!I '~!t8034 02CC 53 4[1 42 .ASCII \SMB\ 3 2F I \ M\
35 02CF C9 .BYTE 'I't80 35 02FF C9 .BYTE 'I!t80
36 .SLW 36 .END

e e -

33

USING THE YDU BOARD FOR RAM ONLY
-by G~ F. Feaver, Burllngton, Ontario

A check of the schematic for the VDU board will reveal that if the 6847
socket is not populated, all "B II inputs to the 4-4019 ICls will be
floating. This is not a desireable condition.

This could not only cause an erroneous output but could also destroy the
chip. RCA in "COS/MOS MEMORIES II, (page 13), states that a floating input
on some ICls such as the 4049 and 4050 can cause the maximum power of 200
rnw to be exceeded and may result in damage to the device. Fairchild in
their IICMOS DATA BOOK II, (page 5-9), states that "al l unused INPUTS must be
tied to VCC or Ground less they generate a local IlMAYBE II• The bad TTL
habit of leaving unused inputs open is definitely out. 1I

Motorola in McMOS HANDBOOK, (Page 6-10) states that 1I ••• by considering the
numerical values of the equivalent capacitors and equivalent resistors
determined by the PN junctions (of the inputs), if can be seen that the
input potential of non-connected inputs is not well defined. This fact can
bring the transistors into operation and generate false output operation.
Consequently, all unused inputs shuld be tied either to ground or to VDD
depending on the required logic function.
IUnused input of NAND gates should be tied to VDD
'Unused inputs of NOR gates should be tied to VSS (srovnd)"

Thus unused inputs of AND gates should be tied to VDD and unused inputs of
OR gates should be tied to VSS (ground).

The same comment applies to unused logic gates in a package which can
generate perturbations in a system through the power supply line.

It is thus recommended that all pins 1, 3, 5,7, of 4019 IC's #2, #3 and #
#4, be connected to ground through a resistor (10k to lOOk ohms) and pin 7
of 4019, #5 be connected likewise. Pins 1, 2 and 3 of 4019 chip #5 are
connected to inverter #9 and pin 5 is connected to +5 and should be
satisfactory.

On 4049, #9 connect pin 11 to pin 10 of the same chip.

A Minimum Count 2114 Memory System Using the YDU Board
- Fred Feaver, 103 Townsend, Burlington, Ontario

For those who purchased a VDU board and then temporarily shelved it due
perhaps to the high cost of the MC6847 colour chip or for other reasons,
but would still like to have an inexpensive 16K of 2114 memory (remember
the 2114L draws 30% less power than the 2114 chip), the following article
should be of interest. This is a minimum parts system.

My micro is a Tek1802 but the information should be usable with any system.

34

I had soldered in all my sockets before deciding that I would not use the
video portion of the board. I noted on studying the schematic that the
4019 quad double pole selector chips would have one input to each "B" AND
gate (in the chip) left floating if the 6847 chip was not inserted into its
socket.

According to manufacturers' recommendations, this must not be done: all
inputs must be connected into circuit or else connected to VCC or VSS as
appropriate. This information meant that suitable resistors would be
required for termination of the floating inputs. It was also noted that
one inverter - 11/12 - of the 4049 was left floating. the necessary
resistors were connected in place.

With the realization that a number of unnecessary chips would be drawing
power if the board was used for memory, I decided to strip the unnecessary
chips and resistors and go for a minimum count system as listed below, the
modified schematic is included. Note that the pin markings on the 2114
section for DO thru 07 do not agree with the original schematic. The
original schematic should have read like the modified one. (A pin to pin
check was made.)

Refer to "Original" parts layout and schematic supplied with PC board.

1. Remove sockets for IC's #1 to 5, #7, #9 and #11 to 14, #11, #12 (this is
really not necessary but it makes for a cleaner, easier soldering
operation).

2. Cut trace close to pin 23 of IC#6.
Cut traces close to pins 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 of IC#10.

3. Connect the following jumpers:
IC#10 pin 3 to 5 to 6
IC#10 pin 10 to 12 to 13
IC#6 pin 23 to IC#10 pins 4, 8 and 9

4. Connect a jumper from IC#9 pin 15 to IC#9 pin 3
(Note IC#9-404-9 Chip must not be inserted in its socket)
(This jumper connects Memory chip #10 to buss H~)

5. Connect the following jumpers:
le's #2, #3 and 4 (for each chip)

IC#5

IC #11 and IC #12 (for both chips)

Jumper pin 2 to 12
4 to 11
6 to 10

15 to 13
Jumper pin 4 to 11

6 to 10
Jumper pin 1 to 2

3 to 4
8 to 9

10 to 11

NOTE:

35

The above conversion leaves active connections to the unused
sockets so if these sockets are used for other functions at a
later date, then more traces must be cut. These can be seen
from the ·original· schematic.

On completion of the above changes and before inserting IC chips, check for
shorts between busses. (Edge connector fingers 1 and 22). If resistance is
less than about 1 megohm, find and correct the fault.

Make a careful visual check to determine that all changes have been made as
specified.

If the above checks are satisfactory install the support chips as follows:

Install a 4001 quad 2 input NOR gate in socket for IC#10
Install a 4508 quad in socket for IC#8.
Install a 4515 in socket for IC#6.

(NOTE: IeilO only requires an OR gate but spare OR gates are not as
useful as NOR gates, hence the substitution.)

Plug the board into Tek 1802 Motherboard and POWER UP. If power supply
light does not go out and you do not feel any unduly warm chips, your
currents are probably OK. (Remember the Tek 1802 power supply is limited
against overcurrents up to about 1 ampere).

POWER DOWN and remove the VDU board from the Motherboard. Install the 2114
Memory chips starting at position 0 and filling locations sequentially,
being careful about location of pin 1.

Plug the VDU board into the Motherboard. Remove the 3/4 K MB1 board and the
2-2101 chips from the micro board.

POWER UP

Run the memory check given in the VDU documentation or from IPSO FACTO #4,
page 20 or from DEFACTO, page 1-65.

This Mod will give up to 16K of 2114 RAM memory from 0000 to 3FFF. No
buffers have been used and no trouble has been experienced.

Use of the space NOR gates as inverters to A14-A15 will relocate the 16
block to any connection desired.

TPA

A7

AO

ACE VDU/MEMORY BOARD
...

D7
~13

12
D4 1 1 D4 2114
D3 14 D3 2114

13 AODO 2 DO A9

-- II I:l ,MWR 10 15 1 Y 3 4 7 6 5

W<+
F 0

-r-- 12 3

4515

~
Id

5~
2~ 11~

00

.1t.,?~ 129
8

~
L.

3 b.
9 2 1 ~ ~9 9 If 11

Zl
4508

2 3 t 11 t 15

-1:- 22 4 2(~ 8 16 0

UJ
en

e e e

37

Netronics Text Editor Improvements
-by Al Irwin. 1312 W.Hi11 St ,; Cham~gnet 111.68120

Mr ~ Er 1c 'l'yson
called him and
did works, but
worked. He did
was for.

had a patch to a print routl1le in your JUl.J ISsUe. 1
we had a tine conversation. It turns out that whAt he
he did not know how the link to and from his routine
not know what the GHI RO (first byte of his listing)

I have seen negative comments about Netronics because they do not
offer help with that software. The reason probably is because they
may not know it's workings either. I think (after conve~sing with
RCA software people) that the editor was written at RC~~ After I
broke it down, it appears that it was originally written tOl;' di'Sk
as well as tape. RCA probably made patcnes in the souroe and assem
bled it for Netronics.
The reason this appears so, is that the space from OES2 to OFSI is
a 256 byte I/O buffer. Eric is correct, from OFS2 to OFFF is not
used. The buffer is actually two 128 byte buffers, one for outgoing,
(OED2), one for incoming data, (OES2). Note that 128 is a nice round
disk sector. When you get the editor from Netronics, you will find
"George" in the buffer several times. Being that George is the name
of "number one" at Netronics, I suspect that he tested the software
by making a small file with his name in it a few times, then wrote it
out to tape and read it back in. They then made tapes of that tested
version so his name ends up in all copies sold by them. This is a
deduction on my part and may not be 100\ correct, but probably is
not too far off.

I once heard that a Mr. Larry Sandlin is the author of the editor
but I never researched it. I think the author deserves a big thanks
as it IS a high level piece of software, even if it IS patterned
after TECO, the editor that DEC used in the PDP-8 era. I detest the
escape key being the command delimiter however, as most modern text
editors use the return key. It is better with the CRT type terminal,

If you do some tape I/O, you will note the contents of the buffer
has changed. If you load the editor, you can erase OES2 to OFFr and
it will run just as well. You will also note that when readiDq or
writing tape, that your display seems to be active in "bursts".
Each burst is a 128 byte chunk of your file on the move. If you
change your tape I/O in ROM to a disk I/O, the edito~ would not
care. The final text buffer starts at 1020 and runs upward. Any I/O
is copied fronl there to the OES2/0F52 bufter or from that buffer
into the final buffer area depending on data direction.

The space from 1000 to 1020 is a huffer log, where pertinent infor
mation about your file is kept. The location of start of file, end
of file, current line start and end, start and end of "save", width
of terminal in characters, (32, 64 or 80), location of current cur
sor, location of start and end of command buffer and other things
are kept there. The location Eric chose is the curent cursor, ~ if

38

.. _. - _., ...---- -
If you do a "PM, you enter at OASa, do a -done with chain, execute •
next bytes" which is GHI RO. Next you GHI Rl, drop the hi'qh bt~, and
PHI Rl. You then 0407CO which is call chain, link to "load link
register", (80), and label for link register is 03SE which i$ back
in chain at command level just the same as Eric did at 098~, This
means that when you use the print command, you simply drop the top
bit in Rl and return to the command level tor the next c~.ftd. If
you do a "T", you run through it's string of one-byte links then end
it with the same drop top bit in Rl and return to cOMmand level by
falling through the "PM link string. o.

I have often wondered if the "drop high bit in Rl" part of the print
routine had to do with checking the high bit in a parallel output
port which could have been used as a status bit to see it the device
was on and ready to print, if not it would have ignored the oommand.

If this were true, the "'I'" command probably did not "fall through"
the string of "PM links. Since there were a couple of bytes left un
used after the change, it could indicate that there was a return to
chain at the end of the "T" link string.

A patch that you may find useful, is one to eliminate the loss of
your file in buffer after you tape it. I found that on Occasion, a
"drop out" in tape would cause an error. It after you tape the file,
if you try t~ check it by reading it back, and get "tape error", you
loose a lot of time trying to load it back and fix it. If you could a
tape it, and merge it back to the end of the file you just wrote out, ~

the tape can be verified. If an error exits, just delete what you
merged back and retape it again. This patch is for the "'1" command,
the "Q" still blows away the file and "W" still removes that part
which has been written out to tape.

'l'he patch iSI

Put a 30 AA at 0587 and 05B8. At OSAA, put 04 07 CO 80 03 SE, What
you are stepping on at 05AA is several bytes of another "island" of
unused code left over from another "modification". There are several
of these in the listing. While I am at it, the byte at 03EA should be
00, not 80. It was wrong on the Netronics tape. This is a CR in an
ASCII string.

It is obvious that the Netronics editor was written with the hard
copy terminal in mind, such as the Teletype Model #33 or equivalent
type. I say this because it uses the escape key for the command de
limiter and delete or rubout as the backspace. On a terminal which
has hard copy, as you "rubout" , you usually echo the deleted char
acter to the terminal. You do not backspace the terminal, as any
further input would then type over the text on the pAper. This WAS
fine for that mode of input.

•

39

you are at a given line in the file, your cursor will be at the start
of the line so his print routine will start at that point in the file.
If you do a "find- for a word within the line, the cursor will be at
the end of the word when located. If Eric does a print after doing a
find, he will start printing at current cursor, following the word,
I did a similar thing to what Eric did to get a print routine on the
editor, except that I made my call in the OASO/OASA part of the code.
The two bytes at OASB and OASC can also be changed and the space used
for your patch, as this is an "island". The two bytes are left over
from their patch change when print was patched out. My print routine
looks at the buff-log at 1016 to get the location to begin printing
from, as that location holds the start of current line and is up.dated
when you do a "Olt", which is "show me the current line" •.

The editor makes use of what is called a "chain" and "link" system.
When it does a task using chain, the call to chain is followed by
one·byte links to most any subroutine in the editor. When the editor
is at command level, it is in the chain routine. As it scans the
command table, each command look-up is followed by a two-byte label
to load into it's "link" register. Eric changed the two-byte label
to be loaded into the link register for the "I''' command, this was at
03A2, directing it to OFS2. His listing then appeared at that loca
tion.

This works very well, but when chain is linked to OFS2 the call to
that subroutine is still under the control of chain and expects to
find a string of one-byte links at that location. If you want execut
able code at that location instead of one-byte calls, you ~ust exit
chain. The author had need to do this and built in the process, which
is the GUI RO, or 90. This is a one-byte call to the -done" routine
which says we no longer want to be in chain, so exit chain and do an
"execute immediate". So, the 90 at the start of Eric's print routine
will cause the code following it to be run. His return is a call to
098A at OF80 in his listing. If you look at 098A, you find D407CD,
which is a call to chain followed by 80 which is a one-byte link to
the "load link register" routine, the 03SE following the 80 is the
label for the link load which is a location back in the command level.

This means that when Bric exits his print routine, he goes back to
chain at the command level and all is well. I commend Eric for his
efforts, he did a good job, even if all of the patch was not fully
understood.

A true fact about the editor is that there is no print routine in
it, what it used to be was patched out. The "T" command link string
is at OA4A. It is a string of one-byte links for chain. It ends at
OA4F. The 14 and 16 appearing in the string are one-byte labels for
buffer pointers. They point to 1014 and 1016 in the buff-log. At
OA4F, (last "T" link) there is a 7C, the next byte is the magic 90,
This is at OASO and is the start of the "p" command link string, The
"T" command continues through the "pIt link string so the "pIt string
is used every time you use the "T" command.

40

If you have a CRT type terminal however, it is a nuisance because
as you delete characters, your terminal cursor moves right with the
echoed delet~1 characters and your editor huller pointers move left
in respect to your terminal display, This means that your terminal
cursor is not really telling you where your are on the line,

A fix for this, is to patch the editor to recognize the backspace
key, and also shut oft the echoed characters that have been deleted,
Your editor and terminal then remain together with their pointers,

A patch for this iSI

At 029D-change 76 to 01, at 02Al-change 72 to OS, at 02DD-change E8
to F8, at 02DE-change FO to 00 and at 02DF-change 3A to 30~ This
completes the backspace patch, For terminals without the backspace
key, the "Control H" is used.

I also enjoy breaking down systems others have written, tor the fun
and challenge. It beats a crossword puzzle any day, I wrote a com
plete source for the Netronics Editor, and understand every byte in
it. I being a professional in the field, understand the value of
protecting copyrights and would not undermine Netronics by making it
public. I can ofter advice to anyone needing patches for that editor
if they were to write to me, return postaqe included.

•
WE'RE SERIOUS ABOUT

You've met the 1802: NO~I we'd 11ke you to meet BA$YST~ our
line of Industrial-quality CMOS mlcrosystems that can put
the full power of the 1802 to work for you. BASYS boards
are ill CMOS, and have the kind of real-world I/O It takes
to Interface motors, switches, dlspl~ys, etc. directly -
without extra boards or componentsl

Take BASYS/1 for example. It's a como l e t e 1802 system
with up to 2K of RAM, 8K ROM, serial RS-232 or current
loop, outputs to drive eight 600mA SOV loads or ten 7
seement displays, and Inputs for up to 80 switches.
All on a 11.5 x 6.5" boardl For software, order the
low-cost IDIOT monitor, TMSI Tiny BASIC, or 8TH (our
version of FORTH), all In ROM with bLll ~.s&Rd.t..

Expandlne your SUper-ELF? Our BASYS/II Memory-I/O
expander plues Into your CPU socket and adds all the
features of BASYS/1 to your ELF. And there's more:
BASYS/2 10-slot motherboard. BASYS/3 extender.
BASYS/5 CMOS power suop l y wi til b a t t e r y backup.
BASYS/6 16K/611K bytewlde RAM/ROM board. BASYS/7
16-chan. 12-blt A/D. And more on lhe wayl

InTRODUCTORY SPECIALS: (IIS$; s h lnped uos t na ld}
CfJSMAC COP1802Cr ~I(J.OO nA5Y~1J ~I H flAM SlII'.50
Software (In ROM): kl t form 1?II. 50

IDIOT/II monItor 15.00 bare board 25.00
TMSI Tiny BASIC 50.00 BASYS/II w 1K RAM $139.50
8TH 100.00 kIt form 119.50

bare board 25.00

lMSI.

THE 1802 ...

41

Netronics eo.patible Tape Load Program
by M.E • Franklin, 690 Laurier Ave., Milton, Ontario, Canada. L9T 4R5• The program listed below will load any cassette SAVEO using Q and the

Netronics Cassette Software, including any software distributed by ACE.

- Load R8 with start address
- Load RA with dump length (plus 1 page)
- Load loader program into RAM not within dump area
- Jump to loader program via RO
- Q led will come on when loading is complete
- Hex leds will display addresses being loaded

0000 F800 LOI 1100 0028 80 GLO RD
0002 B8 PHI R8 0029 F6 SHR
0003 F800 LOI 1100 002A 3B2F BNF 112F
0005 A8 PLQ R8 002C 7B SEQ
0006 F817 LOI nt 0020 302C BR 112C
0008 BA PHI RA 002F 90 GHI RD
0009 F800 LOI /JOO 0030 58 STR R8
OOOB AA PLO RA 0031 E2 SEX R2
oooc 90 GHI RO 0032 88 GLO R8
0000 B9 PHI R9 0033 22 OEC R2
OOOE F83F LOI 113F 0034 52 STR R2
0010 A9 PLO R9 0035 64 OUT R4
0011 F8F9 LOI IIF9 0036 18 INC R8

• 0013 BO PHI RD 0037 2A OEC RA
0014 09 SEP R9 0038 9A GHI RA
0015 3B11 BNF 1111 0039 3A1A BNZ filA
0017 90 GHI RD 003B 302C BR 112C
0018 3A14 BNZ fll4 0030 10 INC RD
001A 09 SEP R9 003E 00 SEP RO
001B 331A BOF #lA 003F F800 LOI 1100
0010 F801 L01 1101 0041 3541 B2 1141
001F AD PLO RD 0043 3530 B2 1130
0020 BO PHI RD 0045 FFOI SMI #01
0021 09 SEP R9 0047 3343 BOF 1143
0022 90 GHI RD 0049 3049 BN2 1149
0023 7E SHLC 004B 303E BR 113E
0024 BO PHI RD 0040 00 IOL
0025 3B21 BNF 1121 004E FFFF SMI #FF
0027 09 SEP R9

•

Netronics Compatible Cassette Hardware

+S~1M~
IN '1

2
------Eft

'I~
Q15u 2•2k LM 3900

DATE:----------

CLUB CO*OBlQUI

NAME:----------------
PRODUCT ORDER

CPU Board
Backplane and I/O Board, Ver. 2
Front Panel (with EPROM Burner, Clock)
r/o Adapter for Backplane, Ver. 1
64K Dynamic (4116) Board
EPROM (2716/32) Board
Kluge (wire wrap) Board
8" Disk Controller Board
Netronics - Ace Adapter Board
Netronics - Quest Adapter Board
DMA Adapter Board (ELF II)
VDU Board

Software

Fig FORTH - Netronics Cassette

Back Issues

"Defacto" Year 1 - 3 (Edited)
Year 4 Reprint
Year 5 Reprint

Meabership

Current Year - Sept. '82 - Aug. '83
includes 6 issues of Ipso Facto

Canadian
American
Overseas

PRICE NOTE

QUANTITY UNIT PRICE

$40.00
40.00
35.00
20.00
50.00
40.00
25.00
40.00
25.00
20.00
3.00

40.00

$10.00

$20.00
10.00
10.00

$20.00 Cdn.
20.00 U.S.
25.00 U.S.

TOTAL •

•

Prices listed are in local funds.
Funds, Canadians in Canadian Funds.
$10.00 for air mail postage. Please
prompt shipment. Personal cheques
clearance prior to shipping orders.

SALE POLICY

Americans and Overseas pay in U.S.
Overseas orders: for all items add
use money orders or bank draft for
require up to six weeks for bank

We guarantee that all our products work in an A.C.E. configuration
microcomputer. We wi 11 endeavour to assist in cus tom applications, but
assume no liability for such use. Orders will be shipped as promptly as
payment is guaranteed.

