ISSUE 31

INDEX

OCTOBER 1982

PAGE

A PUBLICATION OF THE ASSOCIATION OF THE COMPUTER-CHIP EXPERIMENTERS (ACE) 1981

2

6

Executive Corner
Editor's Corner

Members' Corner

1802 Computer Conference Report

FORTH Implementation Notes-II

An 1802 Assembler for 1802 fig FORTH
Programming Tips - Lesson I

Additional Notes about the Window Program
Permutations and Combinations in Tiny Basic
Software for the ACE VDU Board

1802 - Apple Keyboard Interface

1802 Mini-Disassembler

Using the VDU Board for RAM Only

A Miminum Count 2114 Memory System Using the VDU Board

Netronics Text Editor Improvements
Netronics Compatible Tape Load Program

Club Communique

10

12
13
14

16

19

33

37

41

IPSO FACTO is published by the ASSOCIATION OF COMPUTER-CHIP
EXPERIMENTERS (A.C.E.), a non-profit educational organization.
Information in IPSO FACTO is believed to be accurate and reliable.
However, no responsibility is assumed by IPSO FACTO or the ASSOCIATION
OF COMPUTER-CHIP EXPERIMENTERS for its use; nor for any infringements of
patents or other rights of third parties which may result from its use.

President:

1982/1983 EXECUTIVE OF THE ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS

Tony Hill

416-689-0175

Vice-President:

John Norris

416-239-8567

Treasurer: Ken Beyis 416-277-2495
Secnetary: Fred Feaver 416-637-2513
Directors: Bernie Murphy
Fred Pluthero Membership: Bob Silcox 416-681-2848

John Morris
Mike Franklin

Earle Laycock

Program Convenér:
Hews letter: L
Tutorial/Seminars: Ken Bevis
Fred Feaver

Production

Manager; Mike Frankiin 416-878-0740
Editors: Fred Feaver Software: Wayne Bowdish 415-388-7116
Tony Hil1 B
Product Mailing: Ed Leslie 415-528-3222
Advertizing: Fred Plutero 416-389-4070 (Publication)

Fred Feaver
Dennis Milden (Boards)
John' Hanson

416-637-2513
Publication:

CLUS MAILING ADDRESS:

Harcdware &
B. and D.: Don McKenzie 416-423-7800
Fred Pluthero

Ken Bevis

Mike Franklin

A.C.E.

cfe Mike Franklin
650 Laurier Avenue
Milton, Dntario
Canada

L7T 4RS

CLUB MEETINGS 416-878-0740
Meetings are held on the second Tuesday of each month, September through June at 7:30 in Room B123, Sheridan College, 1430
Trafalgar Hoad, Oakville, Ontarfo. A one hour tutorial proceeds sach meeting. The collegeé is located approximately 1.0 km
north of (EW, on the west side. All members and interested visitors are welcome.

ARTICLE SUBMISSIONS

The majority of the content of Ipso Facto is voluntarily submitted by club members. While we assume no responsibility for
errors nor for infringement upon copyright, the Editorial staff verify article content as much as possible. We can always
use articies both hardware and software of any level or type relating directly to the 1B0Z or to micro computer components
periferals, products etc. Please specify the equipment or support software upon which the article content applies. Articles
which are typed are prefered, and usually printed first, while handwritten articles require some work, Please, please send
orfginals, not photocopy material. We will return photocopies of original material 1f requested, Photocopies usuaily will
not reproduce clearly,

ADVERTISING POLLICY

ACE will accept advertising fTor commercial products for publication in Ipse Facto at the rate of 325 per quarter page per
issue with the advertiser submitting camera-ready copy. A1l advertisments mist be pre-paid.

PUBLICATION POLICY:

The newsletter staff assume no responsibility for article errors nor for infringement upon copyright. The content of all
articles will be verified, as much as possible and limitations listed (i.e, Netronics Basic only, Quest Monitor required,
require 16K at DO00-3FFF etc.), The newsletter staff will attempt to publish Ipso Facto by the first week of: Issue 31 -
Oct. 82, 32 - Dec. 82, 33 - Feb. 83, 34 - Apr. B3, 35 - June 83, and 36 - Aug, B3. Delays may be incurred as a result of loss
of staff, postal disruptions, lack of articles, etc. We apologize for such inconvenience, however, they are generally caused
by factors beyond the control of the club,

MEMBERSHIP POLICY:

A membership is contracted on the basis of a club year - September through the following August. Each member is entitied to,
among other privileges of membership, all 6 issues of Ipso Facto published during the club year.

3

Editor's Corner

Last year at this time, I wrote my first editorial to embark upon the year
of developing the "serious system”, It was a good year for our members -
with the introduction of a quality, high-level language - FORTH - and
continued introduction of 1802 hardware - the Dynamic, EPROM and Backplane
Boards.

Our President has declared this year, our sixth, to be the year for
software development. Work is continuing on developing a quality operating
system, and several new or improved high-level languages will be introduced
shortly. This issue continues the series on FORTH, and other articles
offer useful programs for your use., A point must be made here. You, the
user, must make an effort to keep up with the Club in the way it is going,
For a start, a minimum of 16K of RAM from O00OH and 4 to 8K of EPROM at
CO00 or up will be required to use the software and hardware being offered.
For members on the ACE buss, our board line offers these features. For ELF
ITI owners — Netronics and John Ware in Texas offer sufficient boards to
make this minimum system configuration. Also, the ACE-NAB offers a means
of using our boards on the ELF II with a slight reconfiguration of the
hardware. Quest owners may also increase their system through Quest
products, but not through an ACE/Quest interface (none exists).

BOARD NEWS

VDU Board
In response to increased demand for re-introduction of this board, ACE
is offering the VDU for sale on a pre-sale basis until November 10th,
1982. Anyone wishing to add 16K of static RAM or a 1 to 6K video
display at address EOQ0 - FFFF, must order this board now with payment
in advance (receipts will be issued - use money orders or certified
cheques only)., The order for the board will be placed on November 15th
for the number of boards sold ONLY, with delivery via the post the
following week. This sales approach makes a departure from previous
sale policy from an existing stock. ACE does not have the financial
resources to stockpile an extensive line of boards.

Front Panel
The long-awalited companion to the ACE Backplane is here, in stock, in
quantity. The ultimate in user convenience, this board offers a Real
Time Clock, an EPROM programmer, IN Port 4 (Hex Pad) and Out Port 4 (Hex
Data Leds), a sophisticated Single Step, 16 bit address display via 4
Hex Leds, control circuitry and display, an ACE edge connector for
trouble-shooting and a small wire-wrap area. This board connects via
two edge connectors to the backplane ver. 1 or 2, and may be connected
via ribbon cable to other systems. Price: $35.00.

CPU Board
The ACE CPU Board is functioning beautifully, complete with 1802-4-5-6
compatability, 4-JEDEC EPROM sockets (2-4-8K), 1854 UART, 2 Ports,
RS232-C, power-on-reset, selectable Boot, including extensive wire-wrap
area. Price: $40,00.

Put away your trainer, or better yet — give it to your kids and move
up to a serilous micro board, or dedicated controller panel.

SOFTWARE NEWS 4

Included in this issue is a cassette loader program (Netronics compatible)
that will load into your system any cassette distributed by ACE (or
Netronics). Starting with the October 12th, 1982 Club Meeting, ACE will
make avallable public domain software to members ~ bring a cassette and
your own recorder.

FORTH is becoming widely used by our membership. Following are a few
changes you may wish to make to your listing. To cure a double echo
problem from the board (2 characters printed per input) - change:

OAS8F H to 048D
0A77 to 0573
0A79 to 1469

If VLIST bothers you (line over-run, etc.), drop '"CR" after each 80
character line. The result is a continuous listing of commands change -
13DF H to 1469,

If your monitor is not located at 8000H, change the following to your own
monitor's entry point:

118D H high byte
1190 H low byte

Fig FORTH and ACE FORTH

The copy of FORTH distributed by ACE more closely matches COXFORTH than fig
FORTH., Fig included an RCA UART driver at address 0543H and disk I/0
primitives at address 1503 which was considered to be of little use to the
average ACE member. All of the FORTH level words (the dictionary) are
identical to fig FORTH. However, beyond address O0575H, the words are
advanced Z8 bytes. If you buy the fig FORTH Source Listing (highly
recommended), you will find the code still useful by calculating the
address offset,

The following bibliography on FORTH is recommended to get you into the
language:

USA CANADA
1. fig FORTH Source Listing for the 1802 fig FORTH $15.00 $18.00
2, fig FORTH Installation Manual fig FORTH 15.00 18,00
3. "Starting FORTH", Brodie (paperback) Bookstore 20.00 20,00
4, "Byte" Reprints on FORTH, 8/80 to 4/81 fig FORTH 5.00 10,00
5. fig Membership and Newsletter fig FORTH 15.00 27.00

fig: P.0. Box 1105, San Carlos, CA., USA. 94070 - Phone: 415-962-8653

5

Members' Corner

FOR SALE:

T. Acuff, 1200 - 25th Street, Rock Island, Ill. U.S.A 61201 (309-764-5977)

SUPER-ELF (44 pin buss) - Giant Board, Color/Music Board, Power Supply,
Case, RF Modulator, Documentation. Best Offer

HELP:

0. Hoheisel, Herman - bossdorf - str. 33, 2190 Cuxhaven 1, West Germany

Assistance in getting the Quest S100 dynamic board working on an ELF II
and Quest Super Expansion Board.

ERRATA:

Mystery Program - I.F. #30, p.25
address (OODO)H = A 9 PLO R9

A CDP 1854 UART Circuit - I.F. #29, p.l18
Use same inport and outport for 1854, as per schematic = 1 connection
required at 1853 to CS of 1854. Alternative: NOR an inport and an
outport command together if using different ports.

Note:
MRD on 1854 determines whether a port select is an inport or an outport.

* % * BEST ARTICLE WINNERS 1981/82 * * #*

I.F. # 25 - L.A., Hart "Kingdom"

I.F. # 26 - P.B. Liescheski “Schroedinger Equation”

I1.F. # 27 - J. Swofford “1802 Real Time Clock"

I.F. # 28 - M. Franklin "EPROM Programmer"”

I.F. # 29 - L.A. Hart "A Bridge Over Troubled Waters"
I.F. # 30 - T. Hill "Window"

Congratulations! — and a free year's membership to each of the above.

6
1802 Computer Conference Report

- by F. Feaver

The first 1802 Conference of the Association of the Computer-chip
Experimenters was held on Saturday, August 7th at the Welland Campus of
Niagara College in Welland, Ontario.

In spite of very short preparation time and little advertising, there was
still a good turnout of 1802 enthusiasts. Many of those attending were
involved in industrial or commercial uses of the 1802 micro, but were not
Club Members. They seemed to be getting their money's worth of useful
information!

The five speakers gave excellent illustrated talks on the RCA 1802 micro
family, its use and application.

The first speaker was our own Mr. Wayne Bowdish, Software Co-ordinator for
the Club, who talked on "Writing Quality Software"”, using handout copies
and slides very effectively.

Following Mr. Bowdish was Mr. Ivars Lauzums, Administrator of Marketing and
Planning, for RCA Microsystems Division in Somerville, N.J.

Mr. Lauzums told of the development of new RCA 1802 family members such as
the 1802A, 1804, 1805, and 1806, some of which contain RAM, ROM, and an
enhanced instruction set, which can run at a clock speed of up to 18 MHz.
Mr. Lauzums assured the audience that RCA had not abandoned the users of
the 1802 System, but instead was initiating a drive to promote its use with
more development systems and high speed chips.

RCA is setting up a software distribution section under the microsystems
division which will solicit software from users of the 1802 family and will
distribute it on request to others.

Mr. Lauzums gave the Club a new RCA Development System, several high speed
1805 chips and Development Boards as door prizes. Those in attendance were
also given four new RCA Manuals. '

Mr. Lee Hart, Chief Engineer of Technical MicroSystems Inc. (TMSI) of Ann
Arbor, Michigan, was the third speaker. He spoke on the language, FORTH,
FORTH is a registered trademark, so TMSI called its revision of FORTH,
- "EIGHTH".

Mr. Hart outlined the history of FORTH and illustrated how easy it was to
program in FORTH using as a subject, a tiny self-propelled Robot "turtle"
with a self-contained battery-operated micro. This little Robot was
programmed to move so many inches in one direction, stop, play a little
tune and change direction. Running on a table top, it never ran over the
edge, but instead sensed the lack of secure footing, stopped, played its
little ditty and then changed direction, wheeling away from the table's
edge.

Cont'd.....

The fourth speaker was Mr, Jan King, Chief Engineer of Amsat, The Amateur
Radio Satellite Corporation, charged with the responsibility of launching a
satellite into orbit for Radio Amateur communication over a large part of
the world. Mr. King told how the FORTH language was used for the radiation
hardened 1802 micro controlling the satellite. It was also indicated that
the FORTH dictionary had to be bilingual - English and German - to
accommodate the two principals: U.S.A. and Germany. There was no
redundancy developed into the satellite computer system, which was designed
for a ten year life.

The final speaker was one of the founders of the "ACE” Club, Mr. Eugene
Tekatch, President of Tektron Equipment Corporation of Stoney Creek, who
developed the Tek 1802 microcomputer and introduced the 1802 to Canada.
Many hundreds of Tek 1802 computers were sold across Canada and the U.S.A,
Mr. Tekatch has successfully applied the 1802 micro to industry in very
hostile environments, such as steel mills, in which heat, mechanical shock,
vibration and electrical interference would kill most other micros., He has
many satisfied customers. Mr, Tekatch discussed some of these problems and
shared his experiences with the audience.

He has developed an inexpensive logic probe which has provisions for acting
as a pulse injector. Samples of these probe kits as well as other products
were given as door prizes,

The Club wishes to thank all the above speakers and also the following
electronics companies who kindly donated door prizes: L.A, Varah, White
Radio Ltd., AMP of Canada Ltd., Arkon, Tektron Equipment Corp., Western
Radio, and RCA.

A fine 1unchéon and delicious dinner were provided in the Cafeteria of the
College.

The Conference Convenors were Bert de Kat and Fred Pluthero, and they did a
commendable job. It is considered that the Conference was a success and it
is hoped that another can be held next year. Watch for future
announcements on the subject!

FORTH IMPLEMENTATION NOTES - II

by - Tony Hill, RR 2 , Hamilton , Ontario , Canada , L8N 227

This article is the second in what I hope will be a continuing series on
FORTH for the 1802. I will try to include tips on the 1802 implementation of
FORTH as well as some general FORTH tips. I also hope to use these articles
as a lead in to other articles about FORTH written by different authors.
Please feel free to write.

This month we have an article by Ken Mantei on adding an 1802 assembler to
FORTH. Ken is one of the original pioneers in 1802 FORTH and his letters and
articles have been most helpful.

1) ERRATTA - FIG-FORTH LISTINGS

Much to our horror, ACE has recently learned that the version of fig-FORTH
we have been distributing is not identical to the fig official distribution.
There are several copies of 1802 fig-FORTH floating around, and the copy we
have been distributing is slightly different. Please note however, that the
two versions are FUNCTIONALLY IDENTICAL !

The difference between the two versions is that fig has included UART 1/0 in
the middle of their listing. Unless you have the RCA system this code was
written for, the extra bytes only waste memory. Our version does not include
them. The fig version also includes disk I/O for the RCA system, which is
again useless if you don't have the same disks.

The net result of this difference is that the addresses of the high level
fig-FORTH words are offset by a few bytes. Their function and definition has
not changed though. Conversely, all the low level (machine code) words are
the same in both versions, as the extra UART code is after the rest of the
machine code definitions.

Therefore, the comments about patching in I1/0 published in IPSO FACTO, and
the editor's comments about adding Simulated Disk and an Editor in the last
issue, apply to the ACE distribution of f£ig-FORTH. From here on in all
articles will be written to apply to both systems, and any differences will
be noted. Functionally, you the user will never notice the difference
between the two sytems when using FORTH.

2)Bugs in 1802 fig-FORTH

There are a few minor bugs in fig-FORTH. In the next few articles I will
discuss some of them, and present some ways to correct them. For example,
try asking fig-FORTH whether 20,000 is larger or smaller than -20,000. Or
check to see if the computation stack is correctly checked for underflow.
Other problems are the effect of an attempt to divide by zero, the way VLIST
overflows the edge of the screen and the fact that error numbers are
presented in the current base (which you can never remember at the time you
get the error). Also annoying is the way CMOVE is defined, such that an
attempt to move memory to an overlapping area can mess up the data. While
none of these problem are earth shattering, I will discuss some solutions,
and will print any other "bugs" that readers send in. Thanks to PVP for
pointing out some of the previously mentioned problems.

3)The 1802 Assembler

Included 1in this issue is an 1802 FORTH assembler. A few notes on using
FORTH assemblers are probably in line here, as most of the books I have seen
are a little vague on the topic.

First of all, FORTH words written in FORTH ASSEMBLER are usually written in
reverse Polish, like most of the rest of FORTH. (Please stop groaning, it's
not that bad). Therefore, where you would normally write -

GHI RO or LDI EA
in FORTH ASSEMBLER this would be-
0 GHI, or EA LDI,

Secondly, FORTH words defined in ASSEMBLER are started with the word CODE
instead of a " : ". Instead of a " ; ", ASSEMBLER words are terminated with
the word NEXT. For example, the following is a FORTH ASSEMBLER word called
NOTHING that executes a NOP (C4) instruction -

CODE NOTHING NOP, NEXT

Another tricky point to remember is that FORTH assemblers do not usually
allow labels to identify where branch instructions go to. This is due to the
fact that they are not usually two pass assemblers, and thus can not resolve
forward references easily. However, as most of the branching in FORTH
assembler words is required for loops, a set of assembler level loop words
similiar to the high level ones are usually provided.

The loop constructs are

-~- IF, -- ELSE, -- ENDIF,
BEGIN, - UNTIL,
BEGIN, - AGAIN,

BEGIN, -- WHILE, -- REPEAT,

and are used the same way as high level loops, except that IF, UNTIL, and
WHILE, take the assembler words for the branch instructions as their
arguements. For example-

CODE WAIT BEGIN, EF4 UNTIL, NEXT
produces a word WAIT that will wait in a loop on the status of EF4.

Note that you can branch or long branch to an absolute address if you know
what it is. For example, the word BYE to exit to a monitor at address 8000
could be written as-

CODE BYE 8000 LBR, NEXT

Study of the rest of the ASSEMBLER words should prove both educational in the
use of the assembler and in the overall power of FORTH as a programming
language.

4)Writing Machine Code Words Without An Assembler

It is possible to include hand assembled machine code in FORTH words, with a
little bit of work. For example the following is a routine to turn the Q
line on by creating a word called QON-

HEX CREATE QON 7B C, DC C, SMUDGE

Note that a DC op-code must be included in the routine as the last
byte (to re-enter the inner interpreter loop). A tip of the hat to Ken
Mantei, who first pointed this out to me.

;S

AN 1802 ASSEMBLER FOR 1802 fig-FORTH

by~ Ken Mantei,Chemistry Dept.,Cal State College, San Bernardino,Ca. 92407

Once both line and string editing and virtual storage (disc or simulated
RAM-disc) have been implemented on an 1802 fig-FORTH system, an ASSEMBLER
vocabulary can be developed. Until ASSEMBLER is added, FORTH words are
compiled fram high level FORTH words. ASSEMBLER allows a FORTH word to be
written in machine code. Such words run quicker. More importantly, CODE
words can test 1802 flag lines, manipulate the Q line and implement the 6x I/0
instructions.

The development and testing of an 1802 fig-FORTH ASSEMBLER has not been
completed. What is presented here will certianly be improved on. It will
allow one to successfully attach (and patch into FORTH) a first draft
ASSEMBLER. It has been used successfully to pop bytes off the FORTH
camnputation stack to an 1802 port, or push them on fram a port. The words
SEND and READ on lines 8-10 of SCR #8 do this.

To try this out, use the editor to change the error message on SCR #4 line 5
to "OUT OF PAGE BRANCH IN CODE ROUTINE BEING ASSEMBLED". Then enter SCR
#6,7,8 UPDATEing after each screen. Type 6 load. If ASSEMBLER is to be a
permanent addition to the system type:

FORTH DEFINITIONS DECIMAL
LATEST 12 +ORIGIN !

HERE 28 +ORIGIN !

HERE 30 +ORIGIN !

HERE FENCE |

' ASSEMBLER 6 + 32 +ORIGIN !

This version for FORTH including compiled page ASSEMBLER may now be saved.
To write a word, called QON, that turns the Q light on type:

CODE QON SEQ, NEXT

To define HEXKEY?, a word that puts a "1" or "0O" on the FORTH stack, depending

on the status of 1802 flag 4 type:

CODE HEXKEY? EF4 T/F, NEXT
or CODE HEXKEY? EF4 NOT T/F, NEXT

To move a hex number fram the FORTH stack out the 1802 port 4, calling it
POP4, type:

CODE POP4 4 SEND, NEXT
To read.input port 4 to the stack type"

CODE PUSH4 4 READ, NEXT
Notice that ASSEMBLER words generally are followed by a comma. This
convention is used to remind one that these words can only be used in CODE
definitions. A <BUILD DOES> approach is encountered in the construction of

some assemblers, and corrections and improvements to this 1802 £fig-FORTH
ASSEMBLER are to be expected.

SCR #6 (KAM 30 JULY 80)
0 (FIGFORTH 1802 ASSEMBLER 1)
HEX VOCABULARY ASSEMBLER IMMEDIATE

. 2 ;CODE ?CSP COMPILE (;CODE) [COMPILE] [SMUDGE

3 [{COMPILE] ASSEMBLER ; IMMEDIATE

4 : CODE ?EXEC CREATE [COMPILE] ASSEMBLER ICSP ; IMMEDIATE

5 ASSEMBLER DEFINITIONS : STR, F AND 50 OR C, ;

6 :+ INC, F AND 10 OR C, : : DEC, F AND 20 OR C,

7 : LDN, F AND C, ; :+ LDA, F AND 40 OR C,

8 : GLO, F AND 80 OR C, : GHI, F AND 90 OR C, :

9 : PLO, F AND AO OR C, : + PHI, F AND BO OR C, ;
10 : SEP, F AND DO OR C, : : SEX, F AND EO OR C, ;

11 : INP, 7 AND 68 OR C, ; : OUT, 7 AND 60 OR C, :

12 : IDL, O C, : NOP, C4 C, : : SEP, 7B C, ; : REQ, 7A C, ;

13 : SAV, 78 C, ; : MARK, 79¢C, ; : RET, 70C, ; :1D1, F8 C, C, ;
14 : LDX, FOC, ; : LDXA, 72 C, ; : STXD, 73 C, ; : IRX, 60 C, :

15 : XRI, FB C, C, : ORI, FO9 C, C, : : ANI, FA C, C, ; —-—>
SCR #7 (KaM 30 JULY 80)
0 (FIGFORTH 1802 ASSEMBLER 2)

1l : DIs, 71 C, ; : OR, F1 C, ; : AND, F2 C, ; : XOR, F3 C, ;
2 : SHR, F6 C, ; ¢ SHRC, 76 C, : : SHL, FE C, ; : SHIC, 7E C, ;
3 : ADD, F4 C, ; : ADI, FCC, C, ; =+ ADC, 74 C, ; : 8D, F5 C, :

4 ¢ ADCI, 7C C, C, ; : SDI, FD C, C, ; : SDBI, 7D C, C, :

5 : SDB, 75 C, ; s SM, F7 C, ; : SMI, FF C, C, :

6 :+ SMB, 77 C, : : SMBI, 7F C, C, :

7 : NEXT C SEP, CURRENT @ CONTEXT | 7EXEC ?CSP SMUDGE ;

8 IMMEDIATE : Q 39 ; : 2 3A ; : DF 3B; : NOT 8 - ;

9 : EFl 3C ; : EF2 3D ; : EF3 3E ; : EF4 3F :

?FAULT OVER FFOO AND OVER FFOO AND - 5 ?ERROR ;

11 : IF, C, HERE 0 C, 2 ;

12 : ELSE, 2 ?PAIRS 30 C, HERE 1+ SWAP ?7FAULT C! HERE 0 C, 2 ;
13 : ENDIF, ?7EXEC 2 ?PAIRS HERE SWAP ?FAULT C! ;

14 : BEGIN, ?EXEC HERE 1 ;

15 : UNTIL, C, 1 ?PAIRS HERE ?FAULT DROP C, ; -—>

(KAM 30 JULY 80)
FIGFORTH 1802 ASSEMBLER 3)
BR, HERE 1+ ?FAULT DROP 30 C, C, ;: : LBR, COC, , ;
WHILE, C, 1 ?PAIRS HERE 0 C, 3 ;
REPEAT, 3 ?PAIRS 30 C, HERE ROT ?FAULT C, 1+ SWAP ?FAULT Cl ;
AGAIN, 1 ?PAIRS 30 C, HERE 1+ ?FAULT DROP C, ;
9INC3, 9 INC, 9 INC, 9 INC, ; : 9DEC3, 9 DEC, 9 DEC, 9 DEC, ;
T/F, 9INC3, IF, 1 LDI, 9 STR, ELSE, O LDI, 9 STR, ENDIF,
9 DEC, 0 LDI, 9 STR, ;
: READ, INP, 9INC3, 9 STR, 9 DEC, 0 LDI, 9 STR, ;
: SEND, 9 INC, 9 LDN, STXD, IRX, OUT, LDX, STXD,
10 9DEC3, ;

e 0% o /-\m

12

PROGRAMMING TIPS - LESSON 1

by - Tony Hill and Wayne Bowdish

This article is the first of a series on programming the 1802. It has been
a common request from members that we include such a colum in each issue,
so here's the first ones. We invited caomment's and suggestions for what YOU
would like to see in future articles.

1)SETTING UP A PROGRAM COUNTER

Almost all 1802 programs are written to use R(3) as the program counter.
However, the 1802 initializes with R(0) as for a program counter. To make
matters worse, the execute command of many monitors sets R(3) as the program
counter before running your program. What follows here is a piece of
relocatable code you can place at the start of your program that will allow
entry with either R(0) or R(3) as the program counter. With this code at the
start, you can no longer have to specify whether register 0 or 3 is the PC
when a progrm is run.

00 F8 06 LDI START ; LOAD LOW BYTE OF PROGRAM START LOCATION
02 A3 PLO R3 ; PUT IT INTO R(3).0 (JUMP IF R(3) IS PC)
03 20 GHI RO ; GET HIGH BYTE OF R(0) IF IT IS THE PC

04 B3 PHI R3 ; AND PUT IT IN R(3).1

05 D3 SEP R3 ; SET R(3) AS THE NEW PC

06 .. START: ... ; AND CONTINUE WITH THE REST OF THE PROGRAM

This code can be modified to work with any entry register, at the expense of
the code being non-relocatable-

00 F8 07 LDI START : LOAD LOW BYTE OF PROGRAM START LOCATION
02 A3 PLO R3 ; PUT IT INTO R(3).0 (JUMP IF R(3) IS PC)
03 F8 xx LDI START/256 ; GET HIGH BYTE OF THE START ADDRESS

05 B3 PHI R3 ; AND PUT IT IN R(3).1

06 D3 SEP R3 s SET R(3) AS THE NEW PC

07 .. START: ... ; AND CONTINUE WITH THE REST OF THE PROGRAM

2) SIMULATED STACK INSTRUCTIONS

The 1802 has a number of instructions for handling a stack. These include
IDX , LDXA , STXD , IRX , INP and OUT. However, a number of useful stack
manipulation instructions found on other micro's are missing. This program
tip is designed to illustrate how to "fake" these instructions when you are
writing code that does not know for sure which register is the stack
pointer.

PSEUDO REQUIRED

INSTRUCTION 1802 OP-CODES FUNCTION
DEX LDX , STXD Decrement the stack pointer
POP IRX , LDX Load D with top byte on stack
STX STXD , IRX . Store D on top of stack

There may be other useful pseudo instructions (stack or otherwise), and we
‘will be happy to print any that are sent in. Note that the DEX instruction
destroys the D accumulator contents

NEXT ISSUE -
In the next IPSO, we will talk about LOOPs, and explain various way to
implement them, including a discussion on nested loops. Also planned for

future issues are tips on data structures, I/0 programming and other
nonsense.

13

ADDITIONAL NOTES ABOUT THE WINDOW PROGRAM

by- Tony Hill , RR 2 , Hamilton , Ontario , Canada , L8N 2Z7

In response to inquires.about my WINDOW program (I.F. #24) I have listed a
number of additional comments below, most of which should probably have
been in the original article. I also neglected to credit Wayne Bowdish,

whose dissassembler code I modified for use in the program.

ADDITIONAL INTERESTING MEMORY LOCATIONS

02C4 69 BAn "INP 1" instruction used to read the keyboard

in SWAP mode. Used to reset the keyboard when

swapping the WINDOW display back in.
0028 EO Video display RAM high order address byte
0030 E3 Video display RAM high order address byte + 3
003B E2 Video display RAM high order address byte + 2
0091 El Video display RAM high order address byte + 1
00E2 EO Video display RAM high order address byte
01B7 E2 Video display RAM high order address byte + 2
01C3 E2 Video display RAM high order address byte + 2
01c? EO Video display RAM high order address byte
0357 EO Video display RAM high order address byte
0573 70 Video display RAM high order address byte shifted right
0588 EO Video display RAM high order address byte
05C6 EO Video display RAM high order address byte
0614 El Video display RAM high order address byte + 1
062E EO Video display RAM high order address byte

REGISTER USAGE

RO not used R8 "2 byte subroutine call" return
Rl " R9 RAM page pointer
R2 stack pointer (grow down) RA General memory pointer
R3 program counter RB Video RAM pointer
R4 SCRT call RC Op-code high/low nibble storage
R5 SCRT return RD general purpose register
R6 SCRT address storage RE "
R7 "2 byte subroutine call" call RF RF.l passes D for SCRT

INPUT INSTRUCTIONS AND FLAG LINES

When WINDOW finds an input instruction (or a branch on flag condition) it
stops whatever mode it was in and asks for the HEX value to use as the
required input data (or the status of the flag line - 0 or 1). You simply
type in your answer and press a carriage return to continue in whatever
mode you were in when the instruction was found.

ADDITIONAL NOTE FOR NON 6847 SYSTEMS

As a result of the number of inquires I have received about using WINDOW on
non-6847 display systems, I am currently writing a version that will run
on any display capable of accepting the printable ASCII characters and
CR/LF. While I will have to eliminate all graphics and make the output
format simple, the basic functionality will be the same. In view of the
fact that the new program will lack the exciting graphics of the old one,
I am going to name the new program "PEEPHOLE". Watch for it around the
end of the year.

14
PERMUTATIONS AND COMBINATIONS IN TINY BASIC

by - K Schoedel , RR #1 , Erin , Ontario , Canada , NOB 1TO

Everyone knows that Tiny Basic's math capability is severely limited. Only
integers can be used, and not very large ones at that. It is not even
practical to use Tiny Basic for many day to day calculations. Obviously, any
form of higher math is impossible.

Not so. There are many potentially useful operations that use only
relatively small integers. Permutations and combinations fall into this
category. These useful formulas can help you answer many pressing everyday
questions, like "How many ways can I arrange the 4116's on my 64K board?".

The permutation formula provides the number of ways that r objects taken from
a set of n can be arranged. The standard formula for this is:

n! where n is the total number of objects
P= e and r is the number to be chosen and arranged

The main problem with calculating permutations in TINY BASIC is
that factorials are used. The factorial of a number, represented by an
exclamation mark (!) is equal to all of the integers from one to that number
multiplied together. This quickly yields very large numbers; even 8! is
outside Tiny's normal number range. However, it 1is not necessary to
calculate the entire factorial to do permutations. For example, in taking
three objects from a group of ten we get:

10! 10*Q*BHTHGR5R4N 3N x]
U A — = 10%9*8 = 720
(10-3) 1 TGRSR N x]

Since (7*6*5...*1) appears in both the numerator and the denominator it can
be cancelled out and need not be calculated. This allows P{10,3) to be
calculated even though 10l is far outside Tiny Basic's number range.
The formula for combinations is very similiar. It is:

n!
C(n,r)= ________

r!{(n-r)!

This is very similiar to the formula used for calculating permutations.

The only difference is the extra r! in the denominator. The number of
cambinations is therefore the same ds the number of permutations divided by
the factorial of r. The program could in fact calculate combinations this

way, but it does not. Doing so would place a severe restriction on the range
of acceptable values. Instead, the program does the division by r! piece by
piece in between multiplications. This increases by several times the number
of values that the cambinations program can calculate.

Here are a few examples showing the use of this program.

:RUN

PERMUTATIONS OR COMBINATIONS? P (How any ways can you arrange 3
TOTAL NUMBER? 5 of your 5 years of IPSO on
TAKE? 3 a bookshelf?)

3 ITEMS TAKEN FROM 5
AND ARRANGED ON 60 WAYS.

PERMUTATIONS OR COMBINATIONS? C (How many ways can a committe of 3
TOTAL NUMBER? 20 - people be chosen from 20 members?)
TAKE? 3 ‘“

3 ITEMS CAN BE TAKEN FRM 20

IN 1140 WAYS.

So, Tiny Basic isn't quite as useless with numbers as it is always made out
to be. Just because "Tiny can't handle things like that" is no reason to
ignore it; with suitable programs it really can be quite powerful.

PERMUTATIONS AND COMBINATIONS IN QUEST TINY BASIC V3.0
10 PR
20 PR "PERMUTATIONS OR COMBINATIONS" ;
30 P=0
40 C=1
50 INPUT T
60 PR "TOTAL NUMBER" ;
70 INPUT N
80 M=N
90 PR "TAKE" ;
100 INPUT R
110 S=R
120 F=1
130 F=F*M
140 IF F<0 GOTO 290
150 M=M-1
160 IF T=C GOSUB 240
170 IF M>N-R GOTO 290
180 IF S>1 IF T=C GOSUB 240
185 IF S>1 IF T=C GOTO180
190 PR R ; " ITEMS CAN BE TAKEN FR(M " : N
200 IF T=P PR "AND ARRANGED " ;
210 PR "IN " ; F ; "WAYS."
220 GOTO 10
230 END
240 IF F/S*S<>F RETURN
250 F=F/S
260 S=S~-1
270 IF S=0 S=1
280 RETURN
290 PR "SORRY... THAT'S TOO IARGE"
300 END

16

SOFTWARE FOR THE ACE VDU BOARD

by - Tony Hill, RR 2 , Hamilton , Ontario , Canada , L8N 227

A number of article containing software for memory mapped video displays,
including 6847 based units, have appeared in IPSO FACTO over the last few
years. However, a few club members have written in to camplain that there was
nothing written specifically for the ACE VDU board. As a result, this
article has been written to provide a simple routine to allow the VDU board
to be used as an alpha-numeric output device.

First of all, I should say that I have taken the code for this routine almost
directly from the video output routine in NIES MONITOR - VERSION II and so
credit goes to Steve Nies as the original author. I have made same additions
and modifications to convert his routine to be a stand alone subroutine.

The software consists of a single SCRT callable subroutine that can be placed
at the start of any page in memory (RAM or PROM). It assumes that SCRT
passes the value you left in the D accumulator in R(F).1l . To use the code,
simply CALL it at its first address with the character you want to display in
D. What could be easier?

A few other notes are in order. The code will clear the screen, initialize
the cursor AND SET THE SCREEN TO ALPHA MODE when you pass it a form-feed
character (0C HEX). Therefore, the first thing any program should do is send
a form-feed to initialize the display.

The routine will print all MC6847 ASCII characters, and also handle the
following ASCII control codes-
BS (08) - backspace

CR (OD) - carriage return

LF (0OA) - line feed

FF (0C) - form feed

HT (09) - tab (move right to next column of 8)

VT (OB) - vertical tab (move the cursor up one line)

-> (12) - right arrow (DC2) (move cursor right one column)

Other control codes are ignored.

The routine saves all registers that it uses. Therefore, it will not
conflict with the register assignmment of any program it is used with. In
addition, the code passes back the same character passed to it, which makes
it available for further processing.

A simple example program, to print the letter "A" in the upper left hand
corner of the screen might be-

0000 F8 0OC LDI #0C : SET UP THE SCREEN WITH A FORMFEED
0002 D4 xx00 +CALL VDUOUT ; SEND TO VDU OUTPUT ROUTINE

0005 F8 41 LDI #41 ; LOAD THE ASCII CHARACTER "A"

0007 D4 xx00 +CALL VDUOUT ; SEND TO VDU OUTPUT ROUTINE

O00A 00 IDL ; END

The final point you need to consider is that the code requires 2 bytes of RAM
(anywhere in memory) to store the current cursor position in. The code as
presented here is written to use the two bytes in the third page of the video
memory 2114's as the storage location. While this memory is not used by the
6847, if you wish to use it for anything else, you will have to modify the
code accordingly (the values labeled CURSAV).

OO IO-U D LIS O O~ o~ Ul WitS

Tui by b o el bbbt kgt ek

EC 00
E3 00
FF @0

0C
E3
00

7F
20
64
BF

E2
44

EQ

00
20

E2
20

ik
iX

ix MODIFIED BY TONY HILL X
7 *MﬂHH*H“HH*XH**HH*HHXHX**k*ﬂ*ﬂ***ﬂ**“ﬂ*“ﬂﬂXHH

17
B33t S e 833¢983333ettettets it sttt tive ttttsisis it etiiottise et

ACE VDU BOARD QUTPUT ROUTINES
FROM CODE WRITTEN RBY -

V U + + EQL E 0 !
CURSAVT EOL $E300 ’
CTLREG: .EQL $FF00 §
VDUDUT: GHI k8 i
STXD]

GLO R8 y

STXD §

GHI R7 i

STXD ’

GLO R?7 i

STXD i

GHI RF i

SMI $0C i

BZ FF i

LDI CURSAV/254 ¥

FHI 7 i

LDI CURSAV §

PLO 7 y

1.DA R7 ¥

PHI R8 y

LDA R7]

PLO R8 y

LDN R8 §

ANI $7F i

STR R8 7

SKIF! GHI RF i
SMI $20 §

BNF CNTL i

GHI RF i

ANI $BF i

STR R8 §

NEXT? INC K8 ’
TEST: GHI R8 i
SMI Ybu/256+2 ’

BNF FINISH 7

GLO R8 i

STR K2 ;

LDI VDU/256 ’

PHI R7 i

PHI R8 i

LDI vy i

PLO RE y

. Lo VDU + %20 ’

PLO R?7 i

SCROLL: LDA R7 i
STR R8 ’

INC R8 i

GHI R7 7

SMI VDU/256+2 §

BNF SCROLL ’

BLANK! LDI $20]
STR R8 i

INC R8 i

6LO 8 ;

BNZ BLANK i

DEC] y

LDN R2 1

SHI $20)

FLO R8 §

FINISH! LIN RE ¥
ORI $80 [

STR R8 3

Lol CURSAV/256 L

FHI 7 7

LDI CURSAV [

PLO 7 y

GHI R8 V

STR R7 §

INC R?7 7

GLO Rd ¥

STR R7 [

INC R2 7

LDaA R2 9

PLO R7 7

LDA R2)

+ R(7) -

STEVE NIES

START ADDRESS OF VIDED RAM

CURSOR POSITION SAVE LOACATION

VIDEQ MODE CONTROLL ADDRESS
SAVE R(B)

SAVE R(7)

CHECK FOR A FORMFEED! CHARACTER

FROCESS IMMEDIATLY IF FOUND
CURSOR SAVE LOCATION

i SET R(B) -» CURSOR FOSITION

TURN THE CURSOR OFF
MASK OFF INVERT BIT

GET CHARACTER PASSED BY SCRT
TEST FOR A CONTROL CHARACTER
BRANCH IF IT IS ONE
OTHERWISEs, GET IT AGAIN

MASK OF GRAPHICS BIT 6

SAVE OM SCREEN

MOVE THE CURSOR LEFT ONE SPACE

SCROLL SCREEN UP ONE LINE 7
BRANCH IF NOT

OTHERWISE SAVE CURRENT CURSOR FOSITION

X
X

SET UP R(7) AND R(8) TO DO THE SCROLL

MOVE THE SCREEN UF A LINE

BLANK OUT BOTTOM LINE

RESTORE THE CURRENT CURSOR FOSITION

TURN THE CURSOR ON

SET R(7) - CURSOR SAVE POSITION

SAVE CURSOR POSITION

RESTORE R(7)

18

1 005 B7 PHI R7 ;
2 00SE 42 LDA K2 ; RESTORE R(8)
3 005F A8 PLO RS ;
4 0080 02 LDN 2 i
5 0061 BB PHI RS ;
b 0062 9F GHI F } RESTORE PASSED CHARACTER
7 0063 DS +RETRN ;
S 4
)
10 0064 FB ED CNTL: XRI 4ED i TEST FOR CONTROL CHARACTERS
{1 0066 3A 6E BNZ LF 7 XX _CARRIAGE RETURN? ¥
12 00648 88 GLO R3 i YES, SO NOVE CURSOR TO START OF LINE
13 0069 FA EO : ANI $EQ ¥
14 0068 4B PLO RS ;
15 006C 30 4A BR FINISH ;
16 004E FB 07 LF: XR1 07 y
17 0070 3a 7C BNZ BS 7 ¥k LINE FEED 7
18 0072 88 6L0 RS ! YEsy MOVE CURGOR DOUN ONE LINE
19 0073 FC 20 ADI #20 ;
20 0075 A8 PLO RB i
21 0076 98 GHI RS ;
32 0077 7C 00 ADCI 00 ;
23 0079 B PHI RS ;
24 0074 30 25 BR TEST ; 60 SEE IF WE NEED TO SCROLL
25 007C FE 02 B! XRI #02 ;
74 007E 3A 88 BNZ HT ; %X BACKSPACE 7 XX
27 0080 28 DEC RS § YESs MOVE CURSOR BACK AND TEST FOR LINIT
28 0081 98 EXIT: GHI RS ;
29 0082 FF EO SMI VDU/256 i
30 0084 3B 24 BNF NEXT ;
31 00B& 30 29 BR TEST 7
32 0088 FB 01 HT: XRI #01 i
33 00BA 3A 98 BNZ VT § %% HORIZONTAL TAB ? %X
34 008C 88 GLO RS i YES ~TAB OVER TO THE NEXT COLUMN
35 008 FC 09 ADI 408 ;
34 Q0BF FA FB ANI #F8 j
37 0091 A8 PLO RS ;
38 0092 98 GHI RS ;
39 0093 7C 00 ADCI #00 ;
40 0095 &g PHI RS ;
a1 0096 30 25 BR TEST i CHECK TO SEE IF WE NEED TO SCROLL
47 0098 FB 02 VT: XKD #02 ;
43 0094 3A BO BNZ DC2 § %% VERTICAL TAB (0B) 7 %¥
43 009C 88 GLO RE i IGNORE IT IF ON LINE i
45 009D FF 20 SHI #20 i
46 009F 33 Ab BIF UP ;
47 00A1 98 GHI K8 i
48 Q0A2 FF E1 , SMI #EL ;
49 00A4 3B 4A BNF FINISH ;
50 0086 88 UP: GLD RS i OTHERWISE MOVE UP ONE LINE
51 00A7 FF 20 SKI #20 ;
52 00A9 A8 PLO R8 ;
53 00AA 99 GHI 8 ;
54 Q0AB 7F 00 SMBI #00 ;
55 00AD B8 PHI ;
56 Q0AE 30 4A BR FINISH ;
37 00BO FB 19 DC23 XRI ’
58 00B2 32 24 BZ NEXT i LK RIGHT ARRON (12,0C2) 7 X
59 00BA FB 16 XK1 #16 5 %k HOME CURSOR ? (04) Xk
50 00B& 3A 81 BNZ EXIT ! TCNORE IF NOT-INVACID CONTROL CODE
41 00BS A8 PLO R . OTNERWISE POINT CURSOR T0 UPPER LEFT CORNER
62 00B9 F8 EO LDl VDW/256 i
43 Q0BB 3 PHI RS ;
64 00BC 30 44 ‘ ER FINISH i
7
66 00BE F8 Ei FFY LD VDU/256 +1 5 XX FORM FEED XX
47 00C0 K8 PRI RS ;
68 00C1 F8 FF Lni FF ’
69 00C3 A8 FLO RS ;
70 00CA FB FF LDI CTLREG/256 § SET SCREEN TO ALPHA MODE
71 00C6 BT PRI R7 i
2 Q0C? F8 02 LDI $02 y
73 00C% 5 STR R7 y
74 00CA F8 20 CLEAR? LDI #20 + CLEAR VIDED MEMORY
75 00CC 58 STR KB ;
76 00CD 28 DEC R8 7
77 00CE 98 GHI ;
78 00CF FF EQ SMI VIU/256 ;
79 00b1 33 CA BOF CLEAR 3
80 0003 30 24 BR NEXT i RESTORE CURSOR

19

1802-Apple Keyboard Interface
-by J. Pottinger, 505 E. Lakeside Dr., Florence, Ala. U.S.A.,35630

Are you a home brew hacker? Do you have a hex key pad with keys that
bounce when a car pulls into the drive? Then you might use the simple fix
presented here. The hex key pad and circuit were presented by Thomas E.
Hutchinson KILOBAUD, November 1978.

The parts list for this project is pretty short. You will need a 555 timer
(wired as a one shot-see Figure 1), a 16 pin double ended DIP jumper cable
and a solderless breadboard or equivalent. Oh yes, don't forget the APPLE.
Unfortunately they don't grow on trees. I use the APPLE II PLUS with one
disk drive.

Interfacing is simple, just remove the four gates (IC's number 1, 2, 3 and
4) used to decode the key pad and wire pin 13 of each gate socket to the
appropriate annunciator on the APPLE game connector (see Figure 1 AN O to
AN 3). IC 10 can also be removed. The strobe from the APPLE is slowed by
the one shot that replaces the fifth gate of Hutchinson's circuit. This
still uses the key debouncer which isn't necessary, but seemed to be the
shortest route to success.

A software driver for this circuit is shown in the following listing. It
is written in Applesoft basic. The program makes a hex key pad from the
right side of the standard APPLE key board. The program accepts a nibble
at a time from the keyboard and places them in APPLE memory and the
registers of the hex input circuit on the ELF., A simple subroutine should
allow programs entered this way to be saved to disk and stored for later
down loading to the ELF.

One problem with this circuit has surfaced. The debounce circuit limits
the speed of transfer. There is no doubt a simple fix, but I haven't had
the opportunity to try anything yet. Maybe someone is ACE with simular
interests can enchance this simple circuit or maybe a simple compiler for
one page ELFs or maybe...

I GOTO 1000: REM SUBROUTINES FOR INTERPRETING KEYPAD FOLLOW
2 PRINT "ERROR, REPEAT ENTRY": GOTO 300

3 GOTO 2000

17 END

22 PRINT " ";: POP : GOTO 300

34 A = 2:B$ = "2": GOSUB 5080: RETURN

36 A = 3:B$ = "3": GOSUB 5080: GOSUB 5140: RETURN

44 A = 12:8B$ = "C": GOSUB 5100: GOSUB S5i20: RETURN

45 A = 13:B$ = "D": GOSUB 5100: GOSUB 5120: GOSUB 5140: RETURN
46 A = 14:B$ = "E": GOSUB 5100: GOSUB 5120: GOSUB 5080: RETURN
47 A = 15:B$ = "F": GOSUB S5100: GOSUB 5120: GOSUB 5080: GOSUB 5140: RET
URN

62 A = 4:BS = "4": GOSUB S5100: RETURN

63 A = 10:B$ = "A": GOSUB 5120: GOSUB 5080: RETURN

64 A = 5:B$ = "S": GOSUB 5140: GOSUB 5100: RETURN

65 A = 6:BS = "6": GOSUB S100: GOSUB 5080: RETURN

66 A = 7:BS = "7": GOSUB 5100: GOSUB S5080: GOSUB 5140: RETURN
67 A = 1:B$ = "1": GOSUB 5140: RETURN

68 A = 0:B$ = "0": RETURN

69 A = 11:B$ = "B": GOSUB 5120: GOSUB 5080: GOSUB S140: RETURN
75 A = 9:BS = "9": GOSUB 5120: GOSUB 5140: RETURN

79 A = 8:BS$ = "8": GOSUB 5120: RETURN

110 REM

115 REM

120 REM HEX KEY PAD

140 REM USING KEYS

150 REM kkkkhkhkhkkkkkk BY J M POTTINGER
160 REM 6 7 8 9 * QCAB

170 REM Y U110 * C/0 ANDERSON COMPUTERS
180 REM * H J KL * FLORENCE ,AL 35630
190 REM * N M, .*

200 REM kkkkkkkkkkkk

210 REM AS

220 REM kkkkkkkhkhkkk

230 REM *C D EF *
240 REM * 8 9 AB *
250 REM *x 4 56 7 %

260 REM * 01 2 3%
270 REM kkkkkkhkkikhkik

289 REM CONVERTS KEYS TO HEX

290 ON ASC (A$) - 10 GOSUB 2,2,3,2,2,2,2,2,2,2,2
$b22,2,2,2,2,2,2,2,2,2,2,2,34,2,36,2,2,2,2,2,2,2,44
$2+2,2,2,2,2,2,2,62,63,64,65,66,67,68,69,2,2,2,2,2
291 RETURN

299 REM MAIN ROUTINE

300 GET AS

310 GOSUB 290: GOSUB 500

320 Bl = A * 16

325 PRINT BS;

330 GET AS$: GOSUB 290: GOSUB 500

340 B2 = A

350 B = Bl + B2

355 PRINT BS;

360 POKE ADR,B

370 ADR = ADR + |

380 ICT = ICT + 1

390 1IF ICT = 8 THEN GOTO 2000

400 PRINT " ";: GOTO 300

500 GOSUB 5060: REM STROBE OUTPUTS

S10 FOR I =1 TO 200

520 NEXT I

530 GOSUB 5020: REM CLEAR ALL OUTPUTS

540 RETURN

1000 GCOSUB 5200: GOSUB 3000: REM INIT SUB FOR HEX OUTPUT
1005 INPUT "INPUT THE STARTING ADDRESS ";ADR

1010 HOME

1040 GOTO 2000

1999 REM POKES ADDRESS IN ROUTINE FOR HEX OUTPUT

2000 PRINT : POKE 768,ADR / 256

NN
~ N
O e o

2010 POKE 769, (ADR - PEEK (768) * 256)
2020 CALL 770: REM HEX OUTPUT ROUTINE
2030 PRINT " Y,

2040 ICT = 0

2050 GoOTo 300

3000 FOR I =1 TO 10
3010 READ D

3020 POKE 769 + I1,D

3030
3035
3036
3040
3050
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5295
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490

NEXT I

PRINT "THE END OF ARRAY STORAGE IS ";
PRINT PEEK (110) * 256 + PEEK (109)
RETURN

DATA 173,0,3,174,1,3,32,65,249,96
REM CLEAR ALL OUTPUTS

FOR I = 0 TO 3

POKE LAN(I),O0

NEXT I

RETURN
X = PEEK (STROBE)

RETURN

POKE HAN(1),0: REM BIT 1= 2

RETURN

POKE HAN(2),0: REM BIT 2= 4

RETURN

POKE HAN(3),0: REM BIT 3= 8

RETURN

POKE HAN(0),0: REM BIT O= 1

RETURN

POKE LAN(0),0: RETURN

POKE LAN(1),0: RETURN

POKE LAN(2),0: RETURN

POKE LAN(3),0: RETURN

STROBE = - 16320
DIM LAN(3),HAN(3)
LAN(O) = -~ 16296
HAN(Q0) = - 16295
LAN(l) = - 16294
HAN(l) = - 16293
LAN(2) = - 16292
HAN(2) = =~ 16291
LAN(3) = - 16290
HAN(3) = - 16289
RETURN

GOSUB 5010

GET AS

IF A$ = "S" THEN GOSUB 5060
IF AS$ = "4" THEN GOSUB 5160

IF A$ = "1" THEN GOSUB 5080
IF A$ = "5" THEN GOSUB 5170
IF AS$ = "2" THEN GOSUB 5100
IF A$ = "6" THEN GOSUB 5180
IF A$ = "3" THEN GOSUB 5120
IF A$ = "7" THEN GOSUB 5190
IF AS$ = "0" THEN GOSUB 5140
IF A$ = CHRS (3) THEN END

GOTO 5310

GOSUB 5010

FOR I = 0 TO 3
POKE LAN(I),O

GET AS

POKE HAN(I),O

GET AS

NEXT I

0

Yol

29| o

WORMAL
L

oMEMORy PROTECT

NORMAL

MEﬂaRv
ADVANCE

l 5y],
ol Le A
ANG K5eC s 2t & (7)
CcD W
tos50 Jd
AN/ 14GC 7\ CD (0 9 /0 [é)“
Yoy
Q
I~
ANZ2 13GC /3 /) /7 /2 (5)
AN3 126EC 14 3 2 (#)
8| sL
S
8[5 7
S I e N e N)
cD
4050
Zl cD [edy o (o) \
4042 d
22K
/3 /4 /2 ()
/4 = (!
0 Input _
/
[y 3
8ly 1
& e |
7 Sy
RESET 7Sv FIGURE |

To
ELF

(44

23

1802 mini-DISASSEMBLER W. BOWDISH

ANOTHER DISASSEMBLER FOR THE 1802

A long time ago (about 1978) I needed a small disassembler for a
monitor which I was writing. The requirements where as follows:

- must be small, about 2 pages, since the monitor was only 2k bytes
- must print the output on a terminal

- must display the instruction address, mnemonic and operand fields
- should be a SCRT callable subroutine

- must output a specified number of instructions

This article describes a slightly modified version of that original
disassembler. Since the original version was written, the routine has
been modified and used in several applications (see T. Hills window
program for a distant relative of this version).

OPERATION

The routine is a SCRT callable subroutine. On entry it expects some
data in registers. R8 is assumed to contain a count of the number of
instructions (not bytes) to be disassembled. R9 contains the start
address of the instructions to be processed. In addition to these 2
registers, R7, RB and RC are used.

The method of disassembling instructions is fairly straight forward.
For each instruction to be disassembled, the high nibble is used to
index into a table (HIGTAB) which contains the address (low Dbyte
only) of a routine which will process that instruction type. Usually
the instruction processing is straightforward, but much of the code
is used to test for and handle the special cases.

The last two pages of the listing are tables which contain the ASCII
mnemonics for the instructions. These tables contain either 3-byte or
4-byte entries. Note that the last byte of each entry has the high bit
set. The routine 'STBXFR' copies these mnemonics from the table to the
output device until a character with bit 7 set is encountered.

If you ever have a need for a small disassembler then this little
routine may be of some use.

FAGE

21114351

23-SEF-82

HIS2.RCA

RC1802-V01D

MINI-DISASSEMELER

RCA=-1802

I S ASMH
ChF1802 MINI-DISASSEMELER
L
H
L

%0100

L 400

+ORG
S
U
N

0

COUNT OF THE NUMERER

CTIONS TO PROCESS
NS THE S?ﬁRT?NG ADDRESS

A
NE TO RE DISASSEMELED

CONTAINS
INSTR%
CONTA
THE CO

8
F
@
F

rxCxK o

T eman e

L4
L]

DISASM

+CALL

ROUTINES

EXTERNAL

INAL .

USEAGE

REGIGSTEHR

24

wd 7Y
w wn i
w i i
LJ Ol (=}
[oL
o wo w
14 [\ Wi 4 w
[V [V <T
wie o
o oZo
[ol T HZ o
0 Ol [ol
nZ [><1Y]
ZO W @ w
[TS w
= L - z
-0 T -
O3 2w —
o v 4 - jus |
- <€ o
(a2 2 ol TR X Yy <
= 0Z 3% <T Ol 2 ¥ ¥
o B v R) -
b 2 S e R VY v e T 4 |
O Lo Juwiiowd
VLW XG0 UIn
o O D aoaDD D
o O E- >
@ Z U L) 2 e
ol O 200 O
ZOXEZZY ZZSZ
CTEO O3 uj
= L 253 96 O =10 3¢ 3 U6
N ZT % 0. T3 3T
(™] -0
0 x.J pe il
fved + . P
I N TR OO W
O il 1 O el o O e
[v 4

prapraprapraprapEaeraprap T ST SET ST L ST TR LR AL R L L Rl AL R L R bbb Ll R Dbl ol Lol Lol Ll ol S

01 00

O PN NOOO A NI MOV OHCIM<TINONO OO M) OND o
1 et vt T e A CHCICICICICICI I CEI MM MMM M PN M)

+SLY

<
s

I OO0 N O LTS i EY =

OO OO
et s
OOOOOO
NI O O
et Mo
DO

P ¥ 3

OOOOOOOOODOOOOODOO
b bt b b b b b b et e e e b s
i b b b b e O OO OO
OO0 N UL I OMO DT
PO TNIMTNTNLWLED>TMOD™M
OO 00000 O D 0N

[eleolelolele]
b e
FITI PO =+
Glrayommm
0 0T

D NII+ O PONO U BRI OOV NOUT D GO 0NN UTLUIT
prgesiurgssies]

B LD B B O GGG G I I GIFITI FI FIEIFI FITITI FI o b o e

-

NI = OO0 oL
O COOO0O
s s
FIEIPITIED
O > ~ganan

aien LR o>

06

OF

8k

08

00
00

on

38

(Y 8]

men

[28]
(a4}

RCA-1802 MINI-DISASSEMBLER

Iiwrar -’ wr -

LOOF BACK HERE FOR EACH INSTRUCTION

RC1802-V010D NIS2.RCA 23-SEF-82 21114151 FAGE 5

DISASSEMBLER ENTRY FOINT

IISASH S

GHI R3 i\
AL T 1 i POINT RE.HI TO THE DATA TAELE FAGE
PE% §E it/ e) e
YEALL (LF L OUTPUT <CRE<LF>

‘ fCALL FRTADR 3§ OUTFUT INSTRUCTION ADDRESS

1 INSTRUCTION DECODER

’

DECODE:
LT 6 i SET UF THE SFACING COUNTER
FLOD R7 ; .
LON R© N
ANT $0F FUT LOW NIBELE OF INSTRUCTION IN RC.LO
FLO RC ; /
LDA K9
BZ I0LE s IDLE INSTRUCTION?
SHR i\
SHR AN
gHE }FUT HIGH NIBBLE OF INSTRUCTION IN RC.HI

14

FHI RC i/ .
ADT HIGTAE 3\ o
FLO RE ! INDEX INTO HIGH NIBELE_ ERANCH TABLE
LN RE ! AND BRANCH TO INSTRUGTION HANDLER

. FLO R3 i/

i END OF INSTRUCTION FROCESSING

y

ENDINS!
LEC i } DECREMENT THE INSTRUCTION COUNT
BNZ DISASM + IF ALL INSTRUCTIONS HAVE NOT BEEN
GHI RS ; FROCESSED THEN LOOF FOR THE NEXT

‘ BNZ DISASH §/

! OUTFUT CARRIAGE ROUTINEs, LINE FEED TO TERMINAL

. hoTE: Iexous geIuL apToTIGALY QUTFYTE ALILE

. , : AuTonatice :

! BYTE AT LABEL $3%.1 70 A ¥05. N CHANGE THE

H

CRLF !
LDT 301
FCALL TTYouT

$$$.1% LDI $04 i ¥xXx SEE NOTE ABOVE XXX
BR CHROUT

e EEEEEEEEEEEE——

_

RCA-1802 MINI-DISASSEMELER RC1802-VO1D DIS2.KCA 23-SEF-82 21114:!51 FAGE &
1 ; FRINT THE INSTRUCTION ADDRESS
2 ;
3 012E FRTADR!
3 012E 99 GHI R9 i OUTFUT HIGH BYTE OF ADDRESS
5 015F D4 01 EA $+CALL HEX020
5 0132 89 GLO RS ; DUTFUT LOW BYTE OF ADDRESS
2 0133 D4 01 EA $+CALL HEX020
8 0136 F8 20 LDI $£20 5 DUTFUT A SFACE TO SEFERATE
3) i THE ADDRESS AND MNEMONIC
1
11 ; CHARACTER OUTFUT ROUTINE - CALL FROM VARIOUS FLACES
12 ; -
12 0138 CHROUT
13 3138 14 o0 25 $CALL TTYOUT
iz 013E DS ‘ +RETRN
H N
17 i DECODED INSTRUCTION OUTFUT ROUTINES
1
19 i REGISTER TYPE INSTRUCTIONS ¢ XXX KN)
o y
31 013C REG!
53 013¢ 9cC GHI RC i GET HIGH NIEELE
23 013D D4 01 Cé $+CALL UTLSUE i GOTO DISFATCHER
23 0130 H JEYTE INDEX3,REGTAE 3 - INDEX INTO TABLE
5% 0142 E8 .BYTE REGSYM ; - OUTFUT REG. NUMEER
27 0143 30 1E) BR ENDINS LOOF FOR NEXT INSTRUCTION S
& ?
a9 ; LONG BRANCH INSTRUCTIONS
1
31 0145 LBRS
22 0145 F8 4C LD an i NO - FRINT AN *L°
33 0147 D4 00 25 FCALL TIYOUT
334 014A 27 DEC R7 i DECREMENT SFACER COUNT
35 014F 8C GLO RC ; GET LOW NIBELE AND
35 014C FA 04 ANT $04 5 CHECK FOR LONG SKIFS
37 014E 3A &5) ENZ LSKF i SKIF INSTRUCTIONT
?
39 i SHORT BRANCH INSTRUCTIONS
30 ;
4 50 BRS
35 3128 ac S GLO RC i\
43 0151 FE 08 XR1 8 i CHECK FOR SKF INSTRUCTIONS
s o122 32 31 YAl UTie - S
[4 Olrr [~ & |I (] H Fl
zé 8%§§ %3 €3 PEOkE YRBERS,serrar F B0 IRoEXSTAYOMERELeTABLE
)
48 0154 E4 JEYTE HEXEYT i - DUTFUT OFERAND
49 Q15R 9C GHI RC :
50 0i5C FA oC ANT $0C 5 CHECK IF LONG ERANCH
51 015 32 1iE RZ ENDINS i NO =~ THEN FINISHED
53 0160 D4 01 E9 $CALL HEX010 i YES - OUTFUT REST OF ADDRESS
53 0163 30 iE BE | ENDINS
=} 3

7

L 27
(&)
Led
o
—
uwl -
> jues }
< o
~i -
.. b | L
~i o =z
[83] -
= -
=z 2
o] - < & Q
o] L L o
I (42 . 11] =
[* > o [
L gl o [] -
w ~ O O z
I a0 K o =]
¢ L o Ll Lo [V =
o} A M-I o - | 7Y Joun |
WGl o0 vr] !
froRdy] (3] oo ol =71 [b
-y Iy N - -
Zu Du ldd 2 <<
0O OQEMXx (14 o
P 4 uw L e L) (43 Jumn}
O === (=] [-
A3 - =z A Ll -
W - 2
= Ol [ar} - =3 o [}
<< itd 2>~ | =z W o |
[W w [L O 2D Lo}
74 [
> A8 4P A A 4t 4 - amd - AP 4B 4 «mn A
4
w
-t
— o]
<
—
=z [v4
o o]
[1 .
- -
[os [] &5 . (YO s “Tv 4 da1d3)
— 2 - 2O - W (&) Z D DuZ
(o4 [V 4 @ mu X Z L 0O XS
> - Y Ao - O > doe W e
! U O W O Z DO e O 1Z0oa 4l 2Z
4 > AT _ICD O b OG0 D0 0w
O [[]
o] 2
4 i [v4
[[JO% T ES B Y R o AL
[v4 w] L a. - 3
B OHOFNOE> > Z O H uUOeZH0d>>=
GJEJEaJUm @ = INECINZ_ IS S oma:
¢ OWmgO+ - - [daTe =745 o <Tu « T OO SO B (v W _JNE QR = = B4
z >
(=] 0
. | .o L
-e ~4
a
4 p-4 w "0
[V w w o z
L LR TN S |] PSR T ST S} 4
-
[s]
x
L
w
w ~0 0
<T [[
w
i < T —Ou—~ a9 O« 37}
] O O O ocCwWwW ¢ O —
}
- OLOLMOTONO QI CHGUIM M 0O T O SO
=z Ol Moo OMLMMICLOuLTaELM
o |
p
W ~0W o Gl — eI LU O XS L] O 0 < IS 000
] 0000000 ININISIS NN N 00 (000 00 Q0 0000
. (o] b vttt vt e e bl e b R e R R R
@ OODOOOOOTOC CSOOOOOOO OO OO OO
—
} AP O IN DO A CIMIT OO O A CHMI T B0 N O O
<< ot 2 A A S G CICICICE CICI CICE I M)
[]
[v4

—

RCA-1802 MINI-DISASSEMELER RC1802-VO1D DIS2.KCA 23-SEF-82 213114151 FAGE 8
1 y -
2 ; IDLE INSTRUCTION
4 0188 F8 21 IDLE: LDI SFEIDL
5 0180 C8 i LSKF
4
7 i ILLEGAL OFCODE
y
7 Q18E F8 45 ILLESL: LI NOTUST
14 6i66 €8 CSKF
11 ;
12 ; IRX INSTRUCTION
13 0191 F8 3C IrRx: LDI SPEIRX
15 0193 c8 ‘ LSKF
4
i7 ; SHORT SKIF INSTRUCTION
y
19 0194 F8 60 SKIF: LDI SFESKF
30 0196 AR FLO RE
51 0197 D04 01 Cé $+CALL UTLSUE i CALL DISFATCHER
55 019A DO LEYTE STEXFK 5~ OUTFUT NMEUMONIC
23 0198 CO ‘ JEYTE OUTXIT i - END
o y
25 ; $£7X INSTRUCTION
a y
37 019C 8C MIS1: GLO RC i GET LOW NIBELE .
58 0190 FE SHL P X4 0
56 019E FE SHL
30 019F D[4 01 Cé FCALL UTLSUE i CALL DISFATCHER
31 0iA2 C@ JBYTE INDEX4,MS1TAE 7 - INDEX INTO TAELE AND QUTPUT
33 01A3 90
27 01A4 C3 JBYTE UTLXIT ;
33 0iaS FF oC SM1 $0C i NEED AN OFERAND?
15 01Aa7 3E iE EM ENDINS i NO - THEN ERANCH
35 01A9 FF 02 SMI 2
37 olaE 30 EY ‘ ER MS1RTN i MAYEE...
y -
29 ; $£FX INST
40 j
41 01AD MIS2!
4% 01ADl D4 01 CS $CALL UTLGLC i CALL DISFATCHER
43 8%28 Cy JEYTE INDEX3sMS2TAE 3 - INDEX INTO TABLE AND OUTFUT
1
g 3 T -
4z Q1ES FE os sBITE HTLXIT I NEEE'RN OFERAND®
47 O1BS 3B 1E EM ENDINS i NO -
48 01E7 FF 06 einry: SN 6
g 1K N { ! t -
37 8 8% £% 3% ea Feae BEREVS I U85 2 outruT OFERAND
51 OLBE 30 1E BR ENDINS
e *

RCA-1802 MINI-DIISASSEMEBLER RC1802-V01D DIS2.RCA 23-SEF-82 21114151 FAGE 9
’
i DNISSASEMBLER UTILITIES
6UTXIT2 + EXIT FROM UTILITIES TO END FROCESSING
LD} ENDINS
FLO Ré
UTLXIT: GLO RC i NORMAL EXIT FROM UTILITIES
+RETRN

W N DI

OCOOCOC
e e e
elgle @iy
S WNRICO
oM
00

OOOOO O
=t b b b
plgleigliely]
[seRNRoNo MR)]
D> ©
iy O

OO
P
(ple/wly
oy ~o
1 emo

I GO0 00N 0NN 3 G PRI O 0 ONJ0S LR D OFI = OO
agiTmm

OO
e
[glwly
mme
D>Md
[2 38 -9+ 8

OO OCOOOOOO OO0
b s et b b s e
[1alaal=eRas onk calmal cnion] an R anl melon
1O T M 00 ~do Ul b O
OD NN mMmsd b

W@ T WML RO

1
1
1
1
1
1
1
1
1
1
2
:)_
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
G

OV @M OB IP G0N0 LD

ENTRY FOINTS TO UTILITY ROUTINES

UTLGLC - ENTER AND FUT RC.LO IN D-REG
UTLSUER - NORMAL ENTRY FOINT

PRV L L TN

UTLGLC:
GLO RC |
UTLSUE! -
STR K2 ; SAVE CONTENTS OF D-REG
LDA R& 5 GET ROUTINE ADDRESS
‘ FLO R3 i AND BRANCH TO THE ROUTINE
i CALC. OFFSET INTO 3-EYTE TAELES
INDEX3? Lnx SCALCULATE AND LOAD TABLE ADDRESS
ALD
STR R2 0
H ©
i INDEX INTD APPROFRIATE TABLE
4
INDEX4: LDA Ré& i\
ADD i FOINT RE TO START OF TAELE ENTRY
‘ FLO RE i/
14
; OUTPUT INSTRUCTION MNEMONIC
STEXFR: LN i OUTFUT DATA

RE
+CALL TTYOUT

DEC R7 # TEC, SFACER COUNT
LA RE PN\
SHL i CHECK FOR LAST CHAR IN ENTRY
BNF STRXFR 3/
STEX$1:
Lol $20 P\
+Cal Ll TITYOUT 3 N\
neC R7 + SFACE OVER TO OFERAND FIELD
GLO R7 v/
ENZ STEX$1L 3/
RE UTLSUR
+SLUW

RCA-1802 MINI-DISASSEMBLER rRC1802-V01LD DIS2.RCA 23-SEFP-82 21114151 FAGE 10

1 ;
% j OUTFUT HEX EYTE PRECEEDED BY "#°
y
4 O1EA4 HEXEYT
5 O01E4 FB 23 LDI ‘¥
6 01E6 D4 00 25 +CALL TTYOUT
7 i
g i QUTFUT HEX EYTE FOINTED TO BY R9
10 01E9 HEX010¢
11 01E9 49 LDA R9
12 ;
}§ i OUTFUT CONTENTS OF D-REG
y
15 01EA HEX020$
16 O1EA 73 STXD
17 O1EEB Fé SHR
18 01EC Fé SHEK
19 O1EDl Fé SHE
20 01EE Fé SHR
21 01EF D4 01 FE +CaALL HEXASC
3% 0iF2 60 IRX
23 01F3 FO Lox
24 0O1F4 FA OF ANI $0F
gg 01Fé 30 FE . ER HEXASC
Pad ¥y
27 3 QUTFUT *R*® FOLLOWED BY A REGISTER NUMBER o
28 ;
59 01F8 F8 52 ﬁessvn: LDI 'R } OUTFUT AN *R® ©
30 0iFA D4 00 25 FCALL TIYOUT
%g 01FD 8C QUTDIG: GLO RC
-~ y
gg i HEX TO ASCII OUTFUT
4
35 01FE HEXASC:
36 QOLFE FF 0A SMI 10
17 0200 C7 L?NF
28 0301 FC 07 ADT 7
39 0203 FC 3A ADI 34
40 0205 CO 01 38 LER CHROUT
a1 «SLU

I

RC1802-V01D RCA-1802 MINI-DISASSEMELER RC1802-V01D

RCA-1802 MINI-DISASSEMEBLER

IS I R B I B I

BRANCH INSTRUCTIONS (AN

Cl ~ & T e~ 0 M <
(TP T T T S S T L T o T

CIO IO OCINICI OCIO O IO
TEIITICTICATOST CITCTICITI

VCHBIUOCHMITONCTOS
T @ T TN DU WL
CIO CICICL CICI I O N CICI T O T
QOO0 OTCOO OOOOTOD

— CH < DO OO I I DO

AT COICNRC LG0T -Con O <€ o <Cos <0G <ol < 0o Tl

(

w
=
(]
31 S
o < o o O O
c O O O O O O O O <o O [<
o O o W W W O o 2 W O W O O o O O
\-z-\.t-\.t.\t\t\.t-\t\.t- 3.4 *\.7\.:.\.3.\.:-\.:-*“*
Al R B P R B B Zmr e O — E—Z = Z == G =N T
Vi O MNDGL D GehG MG 3 ZOOCONOLOW® o 0w
PNV A A SN S A VL S A A QA A NN SN I
[
L Lo B o} - Lo B o} L G w4 Lo B] - =]
o e W b bt
2 OFOFOFOFOFOFOFOF3
n W>W>N>UWN>N>N>WUN-
L o= s e T s /R i a0 afn 2R s SR f e SR R €100
* 2 o s o 4 v e o 4 v e e e e (T s e s s s s s
=
L4 (w] >
o 4 @
Z <
w -
i o
o X
wm aoemanm)
{=< T VY R TV B VY N V'S B 'Y O VY Ry VY WU UV B VYR VY B i . 1
T < 9 O T I T T T o <« <« T WO o«
MO CIACICCIN CUrt CICNTI M CIT WO MM aCMm-oMuMOoOMo M0
NosoeoeLTaenT s TIPS SN O O TN TN
OCIMN VO OG QU T T UIN VCHO O —AMITONCO Tl
00 NON0 O N0 NOND NONO OIS IS NN NN N NI 00 0 0000 00 0000000 Q000
CICICICE CHCICUCH CICITICICI TN O CACICICHCI CI I CICE CICITICI CE O T
COOCOCOCOO OO0 CSOOOOOOOOCOOOTCO

POACIMTIIINOEROHCIMIT OO CCIMI T U N DO~ T

o ettt e et A O CIC CL CICICI CICI CUMI I M MM I MMM ¢ T8 o o T T TOHD W

w — w]
QOO OSON OO UL EOOw
Lt L L Lud L Ot Lt) it] 0 Ll L dr—t
O D00 O O O O 00 NI

LUl GRS L e L] L)
= b e e b e b b e e
D 3o 3D D D DB D D e Do e S
0 00 A0 0 00 S £ ¢ S 40 O 20X,

L B B Y I I I R

TARLE OF ADDRESSE

HIGTAR?

¥
¥

QOO ITVLLVOLLLVNIVWS
333:433793333433An

WO~ I bl O — CHI T L0
QOCOCOOQOOOO v vd vl v b vd
CICICICICICICICI T O CICI T CICIC
OOOCOOQOCOOOOOOOCOO

OO OO G LN
v e vl A

- o & O O O O O o O e S O O O
w © o O W LU O W o W o o o O O o
A P VA Vi Vg Vi Vi Ve Ve g Ve d Ve Ve Fa e]
Ww g—-2Z—-u--O-—-Q-p-—-D =2 =~ T—-d=—T - —l=l— -
- 2000 J IO OA000OL. OO HH<KM O <% J
[BV AN AV ANV AN AN AN AN GV A Ra e N AalVa e lye
(=]
o,
Ww = - H - A H
£ -l - i L L L L= L= b et Lo L e L B = = Ll - Ll
QO OFOFOFOFOFOFQ O QO QO QO - Q-3
> WW>-W WU WI>WNI>UNI>Wr- B> WIWO-WI >
S IR ofs SR e Ruafte o B0 o = £ Ble off's 0 o= S0 s ¥Ry aff o < Ty v e RG> e aff s SR nlfe s Tu s R s s T s s R o 7 ¢ 1]
| L IR SR B I R A . T T A R T I e T I
w
O e . - Py - P
x m -4 | i ™ > =t
< = 3 Z [V 4 w
| 2ad [Qo = oo |
da} L W w Ll | o
Ll [T . D G o
hlaRl bty 4 w w w w =z
< wow w0 o o Cowow

<
-

54

<
T o T W T T T T o)T T o

QGWAMTMIEOOAMCILL T ONLE NS ILOOM OMOM DI
TOCTOT O O Q) O S S Qo AN QWO S S S cd Q)

OO AT OO TS LOCIME0 0 os DO Ll —CH T i
o e A CIC CICICICE CICI CICI G I I MG I MMM M N T T T
CICICICICI CICE CICI CACI CICI CICE CICI CI CI CICI CE G CICE CHCE CICH T I O
QOOOOOCOOOOOOOCOOOCOOOOOOOOOOOTOO0O

OGN IVNOOO ~HCIMTUIONDO0 O I TN DO OO — M
ACICICICICITICICICICIG I PN PN M) PG < T o ¢ T T < <TUOIN DL

I

RC1802-V010D

MINI-DISASSEMEBLER

RCA-1802

RC1802-VO1D

RCA-1802 MINI-DISASSEMELER

32

QO O O O O O O O O O O O O
W O W O U 0 © W B C O W0 . T
LV W Ve Ve VPl Pl Ve Ve Y P Yd P .

o
2}
s 24

= O = = = T S — = = — 3 =S = = =

¥80

.
==
AXO CEXXEaCSw O IO X QO -G
AW AN AN NS AN A IS AV I N SR

L} L} - L} [I o | [N o | L} L] [] - L} L} [I o |

14 Ll Uil - Leh it o e Lid 4 Ll i Ll e Lehi Db L e L e Dl
L0 b= O b= L) b OO = OO - Q) O - QO - - OO - 25
>~ >= N >N >N >N > N> D>=N>=tN>N >N >N >N >-N>N>-2Z
COECENECRUCHIRERNCRCR/COEONE G N CRC DRl

@ & 6 O 6 S e b 6 b 6t 4 s s s 6 b e s st s s st s o

¥FX INSTRUCTIONS

S2TARS

LLNET TS =4

< o W u o ¢ 0 a9 T Wt T 0 S
< I < ¢ ¢ ¢ T 9 O WS N ST T T

VO O-HITO IO MM OONL Ot SO O A NI OM O
TOT CTON SO CNAN CTLTOT OO TONON LN

QG UINVOO0 D WL —CITIIN O XS O M T OO IS L
S oooa o W wildiv iy b b b bbb b b b b
€4 00 CAOY GO € CHCIC CHCICICH QI G CICI O] CACI CU O CICITICA I O
OO0 OOOOCOOCOOOOOOOCOOCOOCOOOTOOCT

HCIMTINVNNOOO —CIMT NI ONB OO HCIMNT NN OO —C T U0
ot e e A LA G CICI T O CICI I L G M I 1D 1)

©C O 0 O O O O O O O O 0 O O O ¢
P Vs s Pt s gla s W g s s gl s s Dglas gl s s gl s s gl a s gl o s Vgl « s g o s g s g o i 0
ot 2 L L > L ST SR T g Tor Jed Jv Al Jad ol J8L -7 JL -])
L) = = (D e Ty =iy = L= e G L - L —dad e - D
Z = Ao U O ¥ R 0 CTHOHOON
PR W AN AN S N AN AN Al A N AR AN e e T

¥7X INSTRUCTIONS
1
1
I
I
1
1
1
1
1
I
1
1
1
I
1
I

o M O 0 M N2 0
("o BTy BT B Ve B . S e B P 72 I e A B B B S 3
N o0 T T & T 0 O -~ WS T O
T 4T o N T T T T T T T T T T T

CIOT OV T AOMOMMIMOMOIXICIOM O~ MO O
NET CITNIOTINCNONCNCTONCA TS OO0 W

oM NOINOL OMINORAVLOMINOIOLOMINOMO L
oo OO CCE T T T T XN 0GR N0 0000000
CICICE CHCICICI CICICICE CICICICI CICICICE CICICHCI CUCI CICICI CECICH T
[elelaYololalolalalelalelolelalolololalalole afelalalalalelelala

— TN NOCO HCIMTINONO OO —ACIM T IO QOO CIMNMT U0
ot v et e et A CICICI CILCICICI CIC CI T M M MO M9

USING THE VDU BOARD FOR RAM ONLY

-by G. F. teaver, Burlington, Ontario

A check of the schematic for the VDU board will reveal that if the 6847
socket is not populated, all "B" inputs to the 4-4019 IC's will be
floating. This is not a desireable condition.

This could not only cause an erroneous output but could also destroy the
chip. RCA in "COS/MOS MEMORIES", (page 13), states that a floating input
on some IC's such as the 4049 and 4050 can cause the maximum power of 200
mw to be exceeded and may result in damage to the device. Fairchild in
their "“CMOS DATA BOOK", (page 5-9), states that "all unused INPUTS must be
tied to VCC or Ground less they generate a local "MAYBE". The bad TTL
habit of leaving unused inputs open is definitely out."

Motorola in McMOS HANDBOOK, (Page 6-10) states that "...by considering the
numerical values of the equivalent capacitors and equivalent resistors
determined by the PN junctions (of the inputs), if can be seen that the
input potential of non-connected inputs is not well defined. This fact can
bring the transistors into operation and generate false output operation.
Consequently, all unused inputs shuld be tied either to ground or to VDD
depending on the required logic function.

'Unused input of NAND gates should be tied to VDD

'Unused inputs of NOR gates should be tied to VSS (Ground)"

Thus unused inputs of AND gates should be tied to VDD and unused inputs of
OR gates should be tied to VSS (ground).

The same comment applies to unused logic gates in a package which can
generate perturbations in a system through the power supply line.

It is thus recommended that all pins 1, 3, 5, 7, of 4019 IC's #2, #3 and #-
#4, be connected to ground through a resistor (10k to 100k ohms) and pin 7
of 4019, #5 be connected likewise. Pins 1, 2 and 3 of 4019 chip #5 are
connected to inverter #9 and pin 5 is connected to +5 and should be
satisfactory.

On 4049, #9 connect pin 11 to pin 10 of the same chip.

A Minimum Count 2114 Memory System Using the VDU Board
- Fred Feaver, 103 Townsend, Burlington, Ontario

For those who purchased a VDU board and then temporarily shelved it due
perhaps to the high cost of the MC6847 colour chip or for other reasons,
but would still like to have an inexpensive 16K of 2114 memory (remember
the 2114L draws 30% less power than the 2114 chip), the following article
should be of interest. This is a minimum parts system.

My micro is a Tek1802 but the information should be usable with any system.

34

I had soldered in all my sockets before deciding that I would not use the
video portion of the board. 1 noted on studying the schematic that the
4019 quad double pole selector chips would have one input to each "B" AND
gate (in the chip) left floating if the 6847 chip was not inserted into its
socket.

According to manufacturers' recommendations, this must not be done: all
inputs must be connected into circuit or else connected to VCC or VSS as
appropriate. This information meant that suitable resistors would be
required for termination of the floating inputs. It was also noted that
one inverter - 11/12 - of the 4049 was left floating. the necessary
resistors were connected 1in place.

With the realization that a number of unnecessary chips would be drawing
power if the board was used for memory, I decided to strip the unnecessary
chips and resistors and go for a minimum count system as listed below, the
modified schematic is included. Note that the pin markings on the 2114
section for DO thru D7 do not agree with the original schematic. The
original schematic should have read like the modified one. (A pin to pin
check was made.)

Refer to "Original" parts layout and schematic supplied with PC board.

1. Remove sockets for IC's #1 to 5, #7, #9 and #11 to 14, #11, #12 (this is .
really not necessary but it makes for a cleaner, easier soldering
operation).

2. Cut trace close to pin 23 of IC#6Q
Cut traces close to pins 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 of IC#10.

3. Connect the following jumpers:
IC#10 pin 3 to 5 to 6
IC#10 pin 10 to 12 to 13
IC#6 pin 23 to IC#10 pins 4, 8 and 9

4, Connect a jumper from IC#9 pin 15 to IC#9 pin 3
(Note IC#9-404-9 Chip must not be inserted in its socket)
(This jumper connects Memory chip #10 to buss H{MRW)

5. Connect the following jumpers:

IC's #2, #3 and 4 (for each chip) Jumper pin 2 to 12
4 to 11
6 to 10
15 to 13

IC#5 , Jumper pin 4 to 11
6 to 10

IC #11 and IC #12 (for both chips) Jumper pin 1 to 2
3to 4
8 to 9
10 to 11

NOTE: The above conversion leaves active connections to the unused
sockets so if these sockets are used for other functions at a
later date, then more traces must be cut. These can be seen

from the "original® schematic.

On completion of the above changes and before inserting IC chips, gheck foq
shorts between busses. (Edge connector fingers 1 and 22). If resistance is
less than about 1 megohm, find and correct the fault.

Make a careful visual check to determine that all changes have been made as
specified.

If the above checks are satisfactory install the support chips as follows:

Install a 4001 quad 2 input NOR gate in socket for IC#10
Install a 4508 quad in socket for IC#8.
Install a 4515 in socket for IC#6.

(NOTE: IC#10 only requires an OR gate but spare OR gates are not as
useful as NOR gates, hence the substitution.)

Plug the board into Tek 1802 Motherboard and POWER UP. If power supply
light does not go out and you do not feel any unduly warm chips, your
currents are probably OK. (Remember the Tek 1802 power supply is limited
against overcurrents up to about 1 ampere).

POWER DOWN and remove the VDU board from the Motherboard. Install the 2114
Memory chips starting at position 0 and filling locations sequentially,
being careful about location of pin 1.

Plug the VDU board into the Motherboard. Remove the 3/4 K MB1 board and the
2-2101 chips from the micro board.

POWER UP

Run the memory check given in the VDU documentation or from IPSO FACTO #4,
page 20 or from DEFACTO, page I-65.

This Mod will give up to 16K of 2114 RAM memory from 0000 to 3FFF. No
buffers have been used and no trouble has been experienced.

Use of the space NOR gates as inverters to Al4-Al5 will relocate the 16
block to any connection desired.

TPA

A7

AO

ACE VDU/MEMORY BOARD

D7 14 D7
13
12
D4 11 D4 2114
D3 }g D3 2114
DO 2 DO A9 AQ
MWR 1tg |49 sl 16 17 5
1,2%
F 0
4515
ila 11
23 2 ‘1L;L;:=7
400
13 |12
7
41 9| 111
4508
2[3,14,15
1 22772779 816 10

1Y

‘ .

Netronics Text Editor Improvements
-by Al Irwin, 1312 W.Hill St., Champagne, I11. 68120

Mr, Eric Tyson had a patch to a print routfnme in your July Issue, I

called him and we had a fine conversation, Xt turns out that what he
did works, but he did not know how the link to and from his routine

worked. He did not know what the GHI RO (first byte of his listing)

was for,

I have seen negative comments about Netronics because they do not
offer help with that software, The reason probably is because they
may not know it's workings either. I think (after convepsing with
RCA software people) that the editor was written at RCA. After I
broke it down, it appears that it was originally written for disk
as well as tape. RCA probably made patches in the source and assenm-
bled it for Netronics.

The reason this appears so, is that the space from 0E52 to OF51 is

a 256 byte I/0 buffer. Eric is correct, from O0F52 to OFFF is not
used. The buffer is actually two 128 byte buffers, one for outgoing,
(0ED2), one for incoming data, (OE52)., Note that 128 is a nice round
disk sector, When you get the editor from Netronics, you will find
*George" in the buffer several times, Being that George is the name
of "number one" at Netronics, I suspect that he tested the software
by making a small file with his name in it a few times, then wrote it
out to tape and read it back in. They then made tapes of that tested
version so his name ends up in all copies sold by them, This is a
deduction on my part and may not be 100% correct, but probably is
not too far off,

I once heard that a Mr, Larry Sandlin is the author of the editor
but I never researched it, I think the author deserves a big thanks
as it IS a high level piece of software, even if it IS patterned
after TECO, the editor that DEC used in the PDP-8 era, I detest the
escape key being the command delimiter however, as most modern text
editors use the return key, It is better with the CRT type terminal,

If you do some tape I/0, you will note the contents of the buffer
has changed. If you load the editor, you can erase 0E52 to OFFF and
it will run just as well, You will also note that when reading or
writing tape, that your display seems to be active in "bursts®.
Each burst is a 128 byte chunk of your file on the move, If you
change your tape I/0O in ROM to a disk I/0, the editor would not
care, The final text buffer starts at 1020 and runs upward. Any I/O
is copied from there to the 0E52/0F52 buffer or from that buffer
into the final buffer area depending on data direction.

The space from 1000 to 1020 is a huffer log, where pertinent infor-
mation about your file is kept. The location of start of file, end
of file, current line start and end, start and end of "save", width
of terminal in characters, (32, 64 or 80), location of current cure
sor, location of start and end of command huffer and other things
are kept there, The location Eric chose is the curent cursor, so if

38

If you do a "P", you enter at OA50, do a "“done with chain, execute
next bytes" which is GHI RO, Next you GHI Rl, drop the high bit, and
PHI Rl. You then D407CD which is call chain, link to "load link
register®, (80), and label for link register is 035E which is back
in chain at command level just the same as Eric did at 098A, This
means that when you use the print command, you simply drop the top
bit in Rl and return to the command level for the next command, If
you do a "T", you run through it's string of one~byte. links then end
it with the same drop top bit in Rl and return to command level by
falling through the "P" 1link string,

I have often wondered if the "drop high bit in R1" part of the print
routine had to do with checking the high bit in a parallel output

port which could have been used as a status bit to see if the device
was on and ready to print, if not it would have ignored the command,

If this were true, the "T" command probably did not “fall through"
the string of "P" links. Since there were a couple of bytes left un~-
used after the change, it could indicate that there was a return to
chain at the end of the "T" link string. :

A patch that you may find useful, is one to eliminate the loss of
your file in buffer after you tape it., I found that on occasion, a
"drop out" in tape would cause an error, If after you tape the file,
if you try to check it by reading it back, and get "tape error", you
loose a lot of time trying to load it back and fix it, If you could
tape it, and merge it back to the end of the file you just wrote out,
the tape can be verified, If an error exits, just delete what you
merged back and retape it again. This patch is for the "Y" command,
the "Q" still blows away the file and "W" still removes that part
which has been written out to tape,

The patch is:

Put a 30 AA at 0587 and 05688. At O05AA, put D4 07 CD 80 03 S5E, What
you are stepping on at 05AA is several bytes of another "“island" of
unused code left over from another "modification", There are several
of these in the listing., While I am at it, the byte at 03EA should be
0D, not 8D. It was wrong on the Netronics tape, This is a CR in an

ASCII string, -

It is obvious that the Netronics editor was written with the hard
copy terminal in mind, such as the Teletype Model #33 or equivalent
type. I say this because it uses the escape key for the command de-
limiter and delete or ruhout as the backspace, On a terminal which
has hard copy, as you "rubout", you usually echo the deleted char-
acter to the terminal. You do not backspace the terminal, as any
further input would then type over the text on the papar. This was
fine for that mode of input.

39

you are at a given line in the file, your cursor will be at the start
of the line so his print routine will start at that point in the file,
If you do a "find* for a word within the line, the cursor will be at
the end of the word when located, If Eric does a print after doing a
find, he will start printing at current cursor, following the word,

I did a similar thing to what Eric did to get a print routine on the
editor, except that I made my call in the 0A50/0A5A part of the code,
The two bytes at OA5B and 0OA5C can also be changed and the space used
for your patch, as this is an "island". The two bytes are left over
from their patch change when print was patched out. My print routine
looks at the buff-log at 1016 to get the location to begin printing
from, as that location holds the start of current line and is up-dated
when you do a "0lt", which is "show me the current line".

The editor makes use of what is called a "chain" and "link" system,
When it does a task using chain, the call to chain is followed by
one~byte links to most any subroutine in the editor. When the editor
is at command level, it is in the chain routine. As it scans the
command table, each command look=-up is followed by a two-byte label
to load into it's "link" register, Eric changed the two-byte label
to be loaded into the link register for the "P" command, this was at
03A2, directing it to 0OF52, His listing then appeared at that loca=
tion.

This works very well, but when chain is linked to 0F52 the call to
that subroutine is still under the control of chain and expects to
find a string of one-byte links at that location. If you want execut-
able code at that location instead of one-byte calls, you rust exit
chain. The author had need to do this and built in the process, which
is the GLI RO, or 90, This is a one=-byte call to the "“done"™ routine
which says we no longer want to be in chain, so exit chain and do an
Yexecute immediate". So, the 90 at the start of Eric's print routine
will cause the code following it to be run, His return is a call to
098A at OF80 in his listing. If you look at 098A, you find D407CD,
which is a call to chain followed by 80 which is a one-byte link to
the "load link register" routine, the 035E following the 80 is the
label for the link load which is a location back in the command level,

This means that when kric exits his print routine, he goes back to
chain at the command level and all is well, I commend Eric for his
efforts, he did a good job, even if all of the patch was not fully
understood.

A true fact about the editor is that there is no print routine in
it, what it used to be was patched out, The "T" command link string
is at 0A4A. It is a string of one-byte links for chain, It ends at
OA4F,. The 14 and 16 appearing in the string are one-byte labels for
buffer pointers. They point to 1014 and 101€ in the buffe-log, At
0A4F, (last "T" link) there is a 7C, the next byte is the magic 90,
This is at 0A50 and is the start of the "P" command link string, The
"T" command continues through the "P" link string so the "P" string
is used every time you use the "T" command,

40

If you have a CRT type terminal however, it is a nuisance because .
as you delete characters, your terminal cursor moves right with the

echoed deleted characters and your editor huffer pointers move left

in respect to your terminal display. This means that your terminal

cursor is not really telling you where your are on the line,

A fix for this, is to patch the editor to recognize the backspace
key, and also shut off the echoed characters that have been deleted,
Your editor and terminal then remain together with their pointers,

A patch for this is:

At 029Dp-change 76 to 01, at 02Al-change 72 to 05, at 02DD-change ES8
to F8, at 02DE-changye F0 to 00 and at 02DF-change 3A to 30, This
completes the backspace patch. For terminals without the backspace
key, the "Control H" 1is used.

I also enjoy breaking down systems others have written, for the fun
and challenge. It beats a crossword puzzle any day, I wrote a com-
pPlete source for the Netronics Editor, and understand every byte in
it. I being a professional in the field, understand the value of
protecting copyrights and would not undermine Netronics by making it
public, I can offer advice to anyone needing patches for that editor
if they were to write to me, return postage included,

WE’RE SERIOUS ABOUT THE 1802...

You've met the 1802: Now we'd like you to meet BASYS™ our
line of industrial-quality CMOS microsystems that can put
the full power of the 1802 to work for you. BASYS boards
are all CMOS, and have the kind of real-world i/0 it takes
to interface motors, switches, displays, etc. directly --
wlthout extra boards or components!

Take BASYS/1 for exampie. It's a complete 1802 system LN e la
with up to 2K of RAM, 8K ROM, serlal RS-232 or current .
toop, outputs to drlive elght 600mA 50V loads or ten 7-
segment displays, and inputs for up to 80 switches.
All on a 4.5 x 6.5" board! For software, order the
low-cost IDIOT mon!ltor, TMS! Tiny BASIC, or 8TH (our
version of FORTH), all In ROM with full source code.
Expanding your Super-tELF? Our BASYS/h Memory-1/0 I
expander plugs Into your CPU socket and adds all the a
features of BASYS/1 to your ELF. And there's more: L% T
BASYS/2 10-slot motherboard. BASYS/3 extender.. ’ '
BASYS/5 CMOS power supply with battery backup.
BASYS/6 16K/64K bytewlde RAM/ROM board. BASYS/7
16-chan, 12-bit A/D. And more on the way!

ANIRODUCTORY SPECIALS: (US$; shipped postpald) : w“ *

COSMAC COP1BO2CE $10.00 BASYS/1 v 1K RAM $149,50

’ 4 0
Software (In ROM): kit form 129.50 YV Y Y IA Y
IDIOT/4 monltor 15.00 bare board 25.00 Ilflll ’l_l ’ll‘
TMSI Tiny BASIC 50.00 BASYS/4 w 1K RAM $139.50 4
8TH 100. 00 kit form 119.50
bare board 25.00

ISt lechnicalMicro Sems

366 Cloverdale - Anh Arbor, Michigan 48107 « 313/994-0784

41
Netronics Compatible Tape Load Program

The program listed below will load any cassette SAVED using Q and the
Netronics Cassette Software, including any software distributed by ACE.

by M.E, Franklin, 690 Laurier Ave., Milton, Ontario, Canada,

Load R8 with start address
Load RA with dump length (plus 1 page)
Load loader program into RAM not within dump area

Jump to loader program via RO

Q led will come on when loading is complete
Hex leds will display addresses being loaded

0000
0002
0003
0005
0006
0008
0009
000B
000C
000D
000E
0010
0011
0013
0014
0015
0017
0018
001A
001B
001D
001F
0020
0021
0022
0023
0024
0025
0027

F800
B8
F800
A8
F817
BA
F800
AA
90
B9
F83F
A9
F8F9
BD
D9
3B11
9D
3Al4
D9
331A
F801
AD
BD
D9
9D
7E
BD
3B21
D9

LDI
PHI
LDI
PLO
LDI
PHI
LDI
PLO
GHIL
PHI
LDI
PLO
LDI
PHI
SEP
BNF
GHI
BNZ
SEP
BDF
LDI
PLO
PHI
SEP
GHI

SHLC

PHI
BNF
SEP

Netronics Compatible Cassette Hardware

#00
R8
#00
R8
#17
RA
f#00
RA
RO
R9
{t3F
R9
#F9
RD
R9
#11
RD
#14
R9
#1A
#01
RD
RD
R9
RD

RD
#21
R9

0028
0029
002A
002C
002D
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003B
003D
003E
003F
0041
0043
0045
0047
0049
004B
004D
004E

8D
F6
3B2F
7B
302C
9D
58
E2
88
22
52
64
18

9A

3A1A
302C
1D

DO

F80D
3541
353D
FFOl
3343
3D49
303E
00

FFFF

Y ™
+5-v~v*-r——'—"‘V~N”
| 2
IN '
F—~Aan—
015y 2.2k

LM 3900

GLO
SHR
BNF
SEQ
BR

GHI
STR
SEX
GLO
DEC
STR
OUT
INC
DEC
GHI
BNZ
BR

INC
SEP
LDI
B2

B2

SMI
BDF
BN2
BR

IDL
SMI

L9T 4R5

RD
{#2F
f2c

R8
R2
R8
R2
R2
R4
R8

#1A
ff2C

RO

{##0D
#41
#3D
#01
#43
#49
#3E

#FF

CLUB COMMUNIQUE

.NAHE:' DATE:
PRODUCT ORDER : QUANTITY UNIT PRICE TOTAL
CPU Board $40,00
Backplane and 1/0 Board, Ver. 2 40,00
Front Panel (with EPROM Burner, Clock) 35.00
1/0 Adapter for Backplane, Ver. 1 20.00
64K Dynamic (4116) Board 50.00
EPROM (2716/32) Board 40,00
Kluge (wire wrap) Board 25.00
8" Disk Controller Board 40.00
Netronics - Ace Adapter Board 25.00
Netronics - Quest Adapter Board 20.00
DMA Adapter Board (ELF II1) 3.00
VDU Board 40,00
Software
Fig FORTH - Netronics Cassette $10.00

Back Issues

"Defacto” Year 1 - 3 (Edited) $20.00
Year 4 Reprint 10.00
Year 5 Reprint 10.00
Membership

Current Year - Sept. '82 - Aug. '83
includes 6 issues of Ipso Facto

Canadian $20,00 Cdn.
American 20.00 U.S.
Overseas 25,00 U.S.

PRICE NOTE

Prices listed are in local funds. Americans and Overseas pay in U.S.
Funds, Canadians in Canadian Funds. Overseas orders: for all items add
$10.00 for air mail postage. Please use money orders or bank draft for
prompt shipment. Personal cheques require up to six weeks for bank
clearance prior to shipping orders.

SALE POLICY

We guarantee that all our products work in an A.C.E. configuration
microcomputer. We will endeavour to assist in custom applications, but
assume no liability for such use. Orders will be shipped as promptly as
payment is guaranteed.

