ISSUE 35 : ’ - JUNE, 1983

A PUBLICATION OF THE ASSOCIATION OF THE COMPUTER-CHIP EXPER IMENTER S (ACE) 1981

Executive Corner ' ' 2
Members' Corner : 3
Using fig-FORTH with Systems using Interrupts 7
An 1802 Threaded Code Implementation ‘ | 8
Adding SCRT to the Window Program 11
Chip 8 for the ACE VDU Board | 12
Alien - A Game for the 1861 ‘ 14
An Inexpensive Wiring Pencil 19
VDU - 126 x 64 Graphics Dump : a1
A 2 Chip EPROM Programmer for the ELF . 22
Adding the 1861 Video to the ACE CPU Board 26
Homebrew ELF Enhancements and a Mini Chip 8 Game 27
An 1861 TVT for FORTH 31
Nies Text Editor Modificatiqns 35
Relocate 39
Minus 5 Volts for the ACE Dynamic Board 40

IPSO FACTO is published by the ASSOCIATION OF COMPUTER-CHIP
EXPERIMENTERS (A.C.E.), a non-profit educational organization.
Information in IPSO FACTO is believed to be accurate and reliable.
However, no responsibility is assumed by IPSO FACTO or the ASSOCIATION
OF COMPUTER-CHIP EXPERIMENTERS for its use; nor for any infringements of
patents or other rights of third parties which may result from its use.

1983-1984 EXECUTIVE OF THE ASSOCIATION OF COMPUTER CHIP EXPERIMENTERS

President: John Norris 416-239-8567 Vice~President: Tony Hill 416-876-4231 '

Treasurer: Ken Bevis 416-277-2495 Secretary: Fred Feaver 416-637-2513

Directors: Bernie Murphy - Fred Pluthero = John Norris - Mike Franklin

Newsletter:

Production Product

Manager: Mike Franklin 416-878-0740 Mailing: Ed Leslie 416-528-3222
(Publication)

Editors: Fred Feaver

Tony Hill Fred Feaver 416-637-2513

(Boards)

Publication: Dennis Mildon
John Hanson

Club Mailing Address: A.C.E.
c/o Mike Franklin
690 Laurier Avenue
Milton, Ontario
Canada
LI9T 4RS5
416~-878-0740

ARTICLE SUBMISSIONS:

The content of Ipso Facto is voluntarily submitted by Club Members. While ACE assumes
no responsibility for errors nor for infringement upon copyright, the Editors verify
article content as much as possible. ACE can always use articles, both hardware and
software, of any level or type, relating directly to the 1802 or to micro computer
components, peripherals, products, etc. Please specify the equipment or support
software upon which the article content applies. Articles which are typed are
preferred, and are usually printed first. Please send originals, not photocopy
material. We will return photocopies of original material if requested.

PUBLICATION POLICY:

The newsletter staff assume no responsibility for article errors nor for infringement
upon copyright. The content of all articles will be verified, as much as possible, and
limitations listed (i.e. Netronics Basic only, Quest Monitor required, require 16K at
0000-3FFF etc.). The newsletter will be published every other month, commencing in
October. Delays may be incurred as a result of loss of staff, postal disruptions, lack
of articles, etc. We apologize for such inconvenience — however, they are generally
caused by factors beyond the control of the Club.

MEMBERSHIP POLICY: .

A membership is contracted on the basis of a Club year - September through the following
August, Each member is entitled to, among other privileges of Membership, all six
issues of Ipso Facto published during the Club year.

March 2, 1983

Dear Mike,

I was very concerned about the club and its future after reading
the letters from Wes Steiner and Fred Hannon, and your response.
Personally, computer hardware is much more interesting to me than
the software, and I hope the hardware orientation will continue.
For software, the Questdata newsletter is nice, and there are many
magazines devoted to programs and programming in BASIC. IPSO FACTO
is the only publication dedicated to hardware at the hobbyist level
so far as I know.

Your comments concerning article submissions encouraged me to go
through back issues for more information. I found that only the

68 members below have contributed articles in the last 2.5 years
(since issue 19). The table below shows these authors, their loc-
ations (C=ACE Headgquarters area, A=American, O=other), and 5 col-
umns of numbers showing the number of articles printed in issues
19-21, 22-24, 25-27, 28-30, and 31-33, My apologies for any errors
or omissions.

Blok

W Bowdish C 12015 L 0 00010 C Bouwhuis O 00010
D Bauer A 00200 K Bevis C 02001 G Bertrand 0 0l000
J Cayer 0 10100 T Crawford C 001l1l0 G Caughman A 00100
R Cox A 11000 M Coyne C 01000 D Doerr C 10000
B Eckel A 20000 B Erskine A 00010 M Franklin C 10342
P Peaver C 00003 R PFrancis C 01000 O Hoheisel O 00001
J Howell A 00010 F Hannan A 00001 J Hart A 01120
T Hill C 10036 D Heller O 00010 H Hallaska A 00010
A Irwin A 00001 D Jorens A 11000 T Jones A 10230
T Jones 0 00001 P Liescheski A 00301 E Leslie C 10000
A Magnani A 00100 K Mantei A 52012 J McDaniel A 00100
P Muir C 02001 J Munck A 00010 J Munch A 00001
S Nies A 11110 T Pittman A 10101 A Pacheco A 01000
K Poore A 00001 J Pottinger A 00001 D Ruske A 01110
V Raab 0 10000 D Stevens A 00100 W Steiner A 02001
H Shanko A 22010 J Swofford A 00110 D Schuler A 21110
K Schultz A 00010 D Schroyer ? 10000 W Swindells C 00010
J Stephens A 00100 E Smothers A 00120 H Stuurman 0 1llo000
B Smith C 00001 M Smith C 00001 E Shaffer A 01000
R Siddall C 00220 T Setaro A 00010 A Tekatch C 30000
D Taylor A 10000 R Thornton A 10010 G Tomczak C 01000
E Tyson A 00020 G Thomson 0 00001 J Vaal A 00100
R Verlaan ? 01000 C Vlaun O 01000

A quick glance down the rightmost column shows that the last 3
issues were written almost exclusively by Wayne Bowdish, Mike Frank-
lin, Fred Feaver, and Tony Hill. While these people are fine authers
and very knowledgeable, they are soon going to tire of entertain-

-4 -

ing the remaining 496 or so of us, and will quit in disgust. I made
some graphs of the data in the chart, and found that American
members contributed 52%-73% of the articles printed between issue
19 and issue 27. This dropped sharply from that time until the
present, when only 30% were cuntributed by Americans in the last
three issues. Our A.C.E. Headquarters people have picked up the
load, and saved the newsletter. Article submissions from the "other"
group have been remarkably constant over the period shown. While
the decline in American submissions may be due to apathy or lack

of interest, I believe it is due to economic problems caused by

the recession in America, which has many people out of work. If

so, I hope the trend will reverse soon.

You made several important points in your answer to Fred Hannan:
(1) you print what you receive from members, (2) members who write
articles do so at their current level and ahout their current work,
and (3) few members care enough about the Club to contribute to
the newsletter.

With so few people contributing, this is no time to complain about
what is being submitted. I feel it would be far better to submit

an article of some kind concerning your own interests and hope to
stimulate others of similar inclination to follow suit. Everyone

who owns a computer has something to share if he will think about it.
If you cannot think of anything at all to write, look through back
issues for an interesting article and write an encouraging letter

to its author for more of the same. Letters to the Editor are an
interesting part of the newsletter, as well.

Three cheers for you few who are keeping the newsletter alive.
Hang in there a little longer and maybe we'll all submit an article
or two.

DWJ\- jﬁm\w\

Dick Thornton

1403 Mormac Road
Richmond, Va. 23229

Editor's Comment: Thanks, Dick, for the comments, the interesting
statistics and the articles you submitted. As a point of interest, the
current recession has hit Canadians and our Overseas members too. If
Canadians sit down and use their computers and write articles when
unemployed, what do Americans do? I would hope that they do the same
thing. To repeat what I said in the last Newsletter - learning micro-

computer technology and its applications could save your job, or help
you get a new one. M.F.

-5 -

Kendall Stambaugh, Ph.D.
5009 Guide Meridian, Bellingham, Wa. 98226

Dear Mike:

I just wrote to you, but that was before I received IF 33. I echo your
last line to Fred; if it happens, I too shall be saddened by its passing.
I hope it doesn't.

I am somewhere between Fred's Low tech, which wants to stay with the ELF,
and the High Tech that wants to junk the ELF and replace EVERYTHING with
newly designed boards. I just want to upgrade my ELF.

One thing Fred Hannan said really struck a nerve. "Those members who are
fortunate enough to be able to attend the meetings in person",etc.
Maybe it is inevitable that almost everything in ACE is for the benefit of
these members, but occasionally you folks should stop to remember that we
pay the same dues as they do.

Enough train of thought, now. Although I dump on you, I appreciate what
you are doing for IF, and I hope you are willing to continue.

Editors Comment:
The local meetings seem to be somewhat of a sore point among
our distant members., Just remember: the local folk keep
the Club functioning, without special compensation, so you
have a newsletter to read. Club meetings don't cost
anything to have in dollars - just time and personal effort,
but it keeps people interested and doing things, and writing
articles, and putting together newsletters, and mailing
boards and newsletters, and running around, and designing
new boards, and organizing conferences so you have something
to belong to, and to enjoy, and to benefit from as well. MF

Dear Mike:

Four years ago I responded to a letter very similar to Fred Hannan's in

I.F, 33. My letter was published in I.F. 11, page 50. My opinion
hasn't changed. .

Much to my displeasure, my 1802 hasn't changed either. The main reason
for this is that I just didn't know what to do about it. Due to its

;low tech” personality, I've found myself spending very little time with
t.

Contrary to Fred's opinion that, “asking the average member to replace
his motherboard is just driving him away", in my case, at least, the
Club is providing a means of keeping me.

I don't want to buy a personal computer; I want to build one and know
it inside out. The "high tech” members of ACE, through their hard work
and willingness to share, are providing me with the material that I need
to do just that.

-6 -

Talk of the Club folding at a time when I thought its maturity looked

serious enough to make a commitment to, is disheartening, to say the
least,

As for "where does that leave us who cannot attend" meetings - isn't
that what the Newsletter is for? I don't recall seeing any articles
describing a problem that couldn't be resolved and needed some help.
Are we "low tech" people too shy to ask for help?

I, for one, will not be. I plan to "high tech” my 1802. I will
document my progress in IPSO FACTO, and request assistance when needed.

Mike, I hope that you get swamped with similar letters in order that you

and the other "workers" be encouraged to continue to do the fine job you
have been doing.

Yours truly,

Dave Robinson
6528 Montrose Trail, Talahassee, F1. 32308

Editors Comment:

Dave, thank you for writing and for your board order. I don't think ACE
will fold - there are enough local members to keep it going as a meeting
club., But, it will only continue as a Eublishing club 1if our members
continue to submit articles, and right now, their interest appears to be
picking up satisfactorily. M.F.

Bugs

- by C.C. Goodson, Campinas, S.P. Brazil

There appears to be a bug in the listing of the MASTERMIND modifications
program of IF 26 p. 18: Addresses 86 to CO are indicated as not
modified from the original program, but in the dump list included, for
those who do not have IF 10, address B8 is listed as B5 when it should
be BD. Also address 85 is listed in the dump at 17, but as DP in the
modifications list. The latter 1is correct. :

The TBasic KINGDOM Game (IF 25 p.18)) has an error of omission at the
end of line 500, where the math operator is omitted between the last 2
items: 19F. Should this be 19+F, 19-F, or 19*F? Except for this
doubt, the game runs fine, leaving one quickly frustrated as he is
deposed.

The Decimal to Hex Conversion Routine of Mr. Caughman's Tiny Basic
Programs (IF 27 p.8) has a misprint on line 570 of page 9: The
quotation marks should be deleted, so as to read 570 PRINT V; On page
10, line 570 is correct.

-7 -

3 G_ I P

-~ . H '
. Milton Untario

by: Tony Hill 30-431 Pitfield Rd
A number of club member have run into trouble when attempting
to use FORTH with an 1361 output device. The problem stems
from the fact that the 1861 is interrupt driven. The author
of 1802 FURTH (or more correctly - the authors) did not
always stick to a correct method of using the R2 stack. They
allowed the stack pointer to advance back past data that they
intended to use later., This tends to produce funny results
if an interrupt comes along and the interrupt routine also
tries to use the R2 stack. The problem occurs if the FORTH
wordk 1 is used to fetch the loop index onto the data
stack.

Fortunately, there is an easy fix for the problem. It involves
modi fication to the interrupt routine so that it decremenis R2
twice BEFORE it pushes anything onto the stack. If it is not
possible to modify your interrupt routine, you coculd try
patching the FORTH I word. It is located at 1425 in the club
version, and a few bytes up from that in the official fig
version, The code looks like this

1425 12 INC R2
1426 19 INC R9
1427 19 INC R9
1428 19 INC RS
1425 42 LDA R2 ; RZ now 2 bytes up !
142A 59 STR R9
1428 29 DEC R9
142C 02 LDN R2
1420 59 STR R9
142 22 DEC R2
142F 22 DLC R2
1430 DC SEP RC

If an interrupt occurs between 1423 and 1l42F the R2 stack will
be cliobbered, FORTH uses the R2 stack to nest return addresses
so clobbering Its contents will tend to send it off into never-
never land. I can't think of a way to rewrite this code in the
smae space to fix the problem, so it is up to the user to

fit a patch in where ever he can find room in his system.

-8 -

AN 1802 THREADED CODE IMPLEMENTATION
by: Ed Redman RR #2 Porters Lake NS BOJ 2S0

INTRODUCTION TO THREADED CODE

Threaded code is a term used to indicate that a program consists
simply of a set of links to other programs. The other programs
could be machine code subroutines or other sets of links.

One means of producing threaded code is to program a whole set of
subroutine calls (i.e. SCRT calls) like this:

0200 D4 0304 CALL 0304
0202 D4 0206 CALL 0206
0204 Du 0609 CALL 0609

Such a program would be unnecessarily large, as every third byte
would be a D4, If we remove all the Di's we could interpret the
remaining addresses with a small interpreter program. In FORTH this
interpreter is called NEXT.

The FORTH word NEXT is different from the implementation I use. The
interpreter I use requires and is used in conjunction with RCA's
standard call and return technique - SCRT. FIG-FORTH does not use
SCRT or the reserved SCRT registers.

Use of my method requires :
1. R2 to RS setup as per SCRT
2. R6 points to the first byte of threaded code
3. One other register for the interpreter (I use RC)

INT (Interpreter)

My interpreter, called INT, allows me to use threaded code directly
and is quite fast when compared to the regular CALL and RETURN. INT
requires as few as 6 bytes per CALL and RETURN as opposed to as

many as 33 for SCRT. INT may be made slightly longer for ease of
use; the optional instructions are shown in brackets.

SEP R3 ; EXIT POINT TO MACHINE CODE

RC==> INT: (PHI RF) ; ENTRY - SAVE RF (OPTIONAL)

(SEX R2) s R2 = STACK (OPTIONAL)

LDA R6 3 GET NEXT ADDRESS
PHI R3 ; AND PUT IN R3
LDA Ré6 ;
PLO R3 :
(GHI RF) ;
BR INT-1 ; LOOP BACK AND EXIT

NOTES:
. The stack is not disturbed.
. R6 is available to pass data or point
to the next threaded code byte.
. The called subroutine must be in machine language.
. The exit from the subroutine is a SEP RC .

& W N =

This routine is all that is needed to execute threaded code. The
rest of this article deals with making it easier to use.

-9 -

NESTING THREADED CODE ROUTINES

By itself, INT allows only machine code routines to be called.
Nested routines written in threaded code require the use of a
routine called T-CALL. T-CALL allows threaded code routines to
call other threaded code routines if a CALL T-CALL is placed at
the start of the routine being called.

Returning to the calling program requires (you guessed it) a
T-RET routine. Since a CALL T-CALL places R6 on the stack,
T-RET must simply restore R6 and execute a SEP RC.

The code for T-CALL and T-RET is shown below:

0229 DC SEP RC ; T-CALL
0253 12 INC R2 ; T-RET
0254 42 LDA R2 ;
0255 B6 PHI R6 ;
0257 02 LDN R2 ;
0258 A6 PLO R6 ;
0259 9F (GHI RF) ;
025A DC SEP RC ;

An example of the use of T-CALL and T-RET is
R6--> OLTE 0604 ; THREADED CODE CALL TO 0604

0604 D4 0229 CALL T-CALL ; CALL TO NEST ROUTINE

0607 0709 ; MORE THREADED CODE ADDRESSES
0608 0342 ;
060A 0253 ; CALL TO T-RET TO UNNEST

NOTE: Check your version of SCRT for order R6 is placed on stack.

MIXING MACHINE CODE AND THREADED CODE

Calling threaded code routines from machine code is quite easy.
To begin a threaded code sequence just CALL T-CALL. To return
to machine code requires an UNTHREAD routine, which is just

a SEP RS.

EXAMPLE:

0229 DC SEP RC ; T-CALL

0275 DS SEP RS ; UNTHREAD ROUTINE
R3--> 0700 F3 XOR SAMPLE CODE

4
0701 B89 PHI R9 ;
0702 D4 0229 CALL T-CALL ; LINK IN THREADED CODE
0705 0203 SuBl ; THREADED ADDRESSES
0707 0689 SuB2 ;
0709 0275 UNTHREAD ‘
070A FF FF SMI FF ;

RETURN TO MACHINE CODE
AND CONTINUE

BRANEHING AND SKIPPING
Branching about in threaded code requires a few routines. For
speed short branches can be used.
handy. (NOTE: no machine code LBR's are necessary)

Swort Branch:
0942
0943
0944
Long Branch:
0945
0947
09438
0949
094 A
09u4B
osucC
Skip:
094D
O9LE
094F
Example use:
oB21
oB24
0B28
0B2A
0B2C

0942 28
0945 8000
o9ud

0275

6700

LDA R6
PLO R6
SEP RC

LDA R6
STR R2
LDA R6
PLO R6
LDN R2
PHI R6
SEP RC

INC R6
INC R6
SEP RC

Ne Ne N

“e e %o S Ne

CONDITIONAL BRANCHING EXAMPLE

Short branch
0982
0984
0985
Long branch i
0986
0988

if DF = 1

33 42

26

DC

f DF = 1
33 u5

30 4D

BDF SHORT
INC R6
SEP RC

BDF LONG
BR SKIP

e %o So

Ne Ne e Vo Ne S N

- 10 -

For convience long ones are

GET INLINE ADDRESS BYTE
PUT INTO THREADED CODE POINTER
RETURN TO INTERPRETER

GET INLINE HIGH BYTE

SAVE IT

GET INLINE LOW BYTE

PUT INTO THREADED CODE POINTER
RESTORE HIGH BYTE

PUT INTO THREADED CODE POINTER
RETURN TO INTERPRETER

INCREMENT THREADED CODE POINTER
«+« PAST NEXT LINK
RETURN TO INTERPRETER

SHORT BRANCH TO 0B238

LONG JUMP TO MONITOR AT 8000
SKIP NEXT LINK

SKIP JUMPS THIS LINK

SKIP COMES HERE

DO BRANCH CODE IF DF=1
OTHERWISE SKIP INLINE BYTE
RETURN TO INTERPRETER

N %o Ne

DO BRANCH CODE IF DF=1
OTHERWISE SKIP INLINE WORD

e No

I have been experimenting with threaded code for over a year. It
is fast and compact.
a video program which displays 16 lines by 16 characters. I will
gladly send a copy (HEX dump) to any who request it. It requires
2K (1 for display).

For those 1861 1/0 users (DOTS etc.) I have

-1 -
ADDING SCRT TO THE WINDOW PROGRAM

by- Tony Hill 30-481 Pitfield Rd. Milton Untario

Back in the July 82 issue of Ipso Facto I published my version
of an 1802 debugging tool which I called WINDOW. This program
provided a full screen emulation of an 1802, showing what was
going on in its registers and what instructions it was executing.

I received many letters about the program, and for the benefit
of those who did not write, the code listed in Ipso was
correct as printed. However, I have come up with one small
improvement.

The original version of WINDOW emulates code exactly as it is

found in memory. While this is fine for most debugging, it creates
a problem if the program contains a lot of SCRT calls. It quickly
becomes very tiring watching the 31 SCRT instructions flash by
everytime a subroutine is called. You really get some idea of the
overhead involved in using SCRT, and debugging becomes tedious.

Listed below is a patch to mask out the SCRT instructions in the
TRACE and STEP modes. The patch is inserted in some unused memory
on pages 3 and 4 of WINDOW. The patch will be used if you change
the byte at 0311 from 7F to F3.

The SCRT patch works by switching WINDOW into QUICK mode whenever
it sees a D4 or a D5 instruction., It stays in QUICK mode until

it finds another Dx type instruction (presumably a D3). If the
program being tested has R4 and R5 pointing to valid SCRT code
that code will be executed without being displayed.

ADDRESS DATA ADDRESS DATA
03F3 D7 8B 8C F6 04F2 D4 02 4F 9C
03F7 FF 02 3A FE 04F6 FF 0D 32 FF
03FB D4 04 F2 D5 O4LFA D4 01 CA 3A

O4FE F2 D5

There is one other note I should throw in here. If WINDOW comes
to a branch on EFx instruction, it asks for the value of that flag
line. If you do not enter ANY value, but just press a carriage
return WINDOW will attempt to execute the branch address that
follows as an instruction!! This can cause funny things to
happen, so don't do it. However, if you insist on being fumble
fingered, and don't plan to use the patch listed above,

the extra memory can be used for the following patch-

ADDRESS DATA ADDRESS DATA
038A D4 03 F3 C& 03F3 D4 00 90 F3
03F7 05

Work on my serial version of WINDOW has ground to a halt. I have
it coded and mostly tested, but haven't been able to find time to
finish. Such is life.....

-]2-

CHIP - 8 for the ACE VDU Board
by: Tony Hill 30-481 Pitfield Rd. Milton Onx>rio

Many years ago when the Radio Corporation of Amsrica was still
interestad in promoting their microprocessor chip a5 something
other than a labratory curiosity, they developed a simple home
computer built around it, This computer, known in the dark oid
days as the VIP had a simple interpreter that could be entered
into it to run games and other equally useless programs. The
only interesting thing about the interpreter (CHIP-8) is that
many games were published for it by RCA and others.

This article has a HEX listing of a version of that interpreter
that can be run on any system using the ACE VDU board. This
makes the library of CHIP-8 games available to systems using
that board. The program is loaded at address 1000 and requires
three pages. The ACE VDU board will require one simple mod

to make the program run.,

The original CHIP-8 ran with an 1861, which provided an interrupt
every 1/60 seconds;usefull for timing purposes. There is a pin

on the VDU 6847 chip that can also provide that signal, but it
must be tiaed to a flag line and poiled in software instead of
generating interrupts, The listing assumes EFf1 will be used,

but it is possible to use any of tne four lines by ¢hanging the
underiined 34 and 3C branch instructions accordingly. Simply
solder a wire between pin 37 (FS) and edge connector pin 19.

Input to CHIP-8 was originally done with a scanned HEX keypad.
Since it is not likely that an ACE system would have the same
hardware configuration, two long branch instructions have been
provided to allow the user to patch in his own input. The
branch at 110D should jump to a routine that gets a single

HEX digit and puts it in D. The routine should set DF and
return with a SEP R4y (D4) instruction., The routine jumped to
at 119C should check for a key pressed, and set DF if so.or
clear it if not. If pressed, the key value is placed in D.
Either way the routine should return immediately with a SEP R4,
Note that CHIP-8 uses the SCRT registers internally, but not
for SCRT. Registers C,D,E,F are available for I/0 use, all
others must be saved first. R3 is the program counter and

R2 points to the first free byte of a grow down stack.,

The program is used in the same manner as the original CHIP-8.
CHIP-8 programs are loaded at 0200, and program execution
starts at 1000 with RO or R3 as the program counter. One other
interestin note is that CHIP-VDU has four times the video
resolution of the original program, thanks to the use of

the 6847 instead of the 1861.

One final note- the address of the control register for the
6847 video modes is stored at 11EC far the high byte and at
11EF for the low byte. The last used address of the program
is 12EE.

162a

1o1a
16ze
1658
1o
1656
16ea
1gva
165a
lasa
16R6
1eBa
ieCe
1eDa
16EQ
ieFe

i11ee
i11e
1128
1138@
114@
115&
1168
11ve
1186
1130
tiRe
116G
11Co
110e
11E@
1iFa

12aa
121&
122a
123e
124e
1228
1zéa
2y

paicia!

25a
12R0
1ZEQ
1206
120m

& dmias T

1 ""ﬁ‘a

L Y9

Fg
Fa
FIE
3%
%6
8F
sC
11
91

85
RS
B3I
e
42
FF
1E

FF
FF
F4
A
6E
56
1A
1A
aF
D4
Fe
45
D3
=5
4%
AF

@
Fa
Fe
Fa
Fa

]
it

<C
268

Sa
=
b

Qe

aF
F
as

BV

O

BF IC

BT a8

AT

TE

o

B

-

aanskan

-
[y

HALRULDS

HENET L e R

-
b

B& F3 CE

F3
2B
EF
24
F3
AC
11
02
32
B4
TR
R
1E
43
ED

FF
FF
28
ES
48
D4
12
12
45
8
4%
S5
F3
&
D

32 =F

oA
=0
16
2@
e
FA
45
ED
=
EC
FF
F5
=C
=C
FF

CF

32

@1
BC
Fe
ac
11
43
3C
19
=
BF
55
76
83

e@
o@
o
@6
56
oo
D4
Dt
ES
&C
Fa
D4
Fa
FE
45

o

JE
F&
Fé&
Fa
Fa
JF
FA
SE
1&
F&
a1
jals)
a2
zC
=1

A6
42
B3
45
A5
AZ
12
99
EF
95
B4
SF
33
33
3A

45
as
FC
BF
oA
q“ﬁ.
22
15
F3
45
AS
4%
52
93
AR
FF

26
(=i
28
g
oy

FE

aF
RE
aF
1
ES
A
FE
18

37

A2 F8

Fg
F3
82
AF
(5i=1
D3
11
as
BE

-
o2

=L
FF
1E
Fl
ED

/3
B2
al
93
FC
S5
88
835
3

o
1)

S€
FA
ES
BE
&6
FF

24
S8
F&
1a
EE
FE
HD
ZE
Se

L
23

0
BF
2C
5

EEEEE:

[y
-

FRDERBABERTEE LA BRBHN

9

o @

F&

&

=
o

Sa
1a
as

ol

e
e
-

1g
=L

P
-
e
-

2

FC

12

1g B4 F2

ES
=1
SF
F

Fe
1E
vC
o2
CE
FF
Fg2
A
a

B
1E

S8
a8
D4
F&
SH
F3
Fg
TS
1S
4
aF
3A
D2
EE
aF
EF

26
Fe
Fa
16
FA
AC
F2
g2
36
E1
FF
EZ
DS
1@
Fg

AS
e
28
F&
Fe
11

-
o
L=y

o
&F
a1
FF
BF
A3
1E
FF

D4
A
Fg
1B
3e
Fe
Fa
95
15
F&
7C
BD
56
Fd
ER
FF

28
Sa
@
=8
TF
ac
ba
2D
SE
Fa
28
5]
ic
AC
CF

55
4@
31
Fé
F&
11
83
FA
36
B8
AF
Fg
33
FF

F3
D4
12
RE
44
/7Y
A7
Sz
D4
DE
oo
a7
FS
36
D4
FF

2E
Fa

b
s

Fa

o
)

)
F&
20
CF
31
Fz
(1)
ac
a1}

1E A4 F2 11 BS

ca
3H
ZE

oA
-l

F3
11
B
aF
cA
a8
F8
13
11
SR
FF

Da
&4
BR
2A
4E

-
o
L

an
s
43
A4
ES
S8
EF
Ve
F3
oy

13
Sa
18
26
Fs

F&
RE
FAE
:ED
F‘C
Fg

11
48
7B
g
Fa
11
£
E3

3c
oz

ES
3@
E3
1E
FF

A4
eR
@é
1A
F&
Sa
T4
4S5
ES

D4
D4
A
Es

LEEE

ay

14
Fa
Fa
28
Fs
&c

SF
&7
@s
o
ZD

EE
Fg
38
FC
A7
11
AD
45
BE

B4
BF
2D
D3
13
53

ca
ai
FA
F&
3B
sV
g
AS
F3

F3
o1
7R
63
4C
11
B
e
F3
28
EF
42
E6
15
FF

Ee
oF
Qg
3C
F3
F‘3
86
A

CF
Se
19
AC
BS
11
BS
&5
CF
=1
F8
BS
F3
e
FF

SR
[Rla)
oA
oF

7
1y
F&
88
F3

45 S8 D4
AF 22 F8
Fe @@ VE
F4 B3 Sé

BF 2 FE
12 oy

E@

1C
Se
1@

-
¥

Lar]
i

FE

3 AF

-
T
-
i
-
-t

38

z C1

D1
BC
A

1a
Se
Fa
R
S2
Fi
8r
AF

-
-t

AF
7R
Fg
Fg
FF
Dst

12
Sa
Sg
Aa
F3
RC

]
o

2E
EF,
19

-

=4

al
a1
E4

-14 -

Alien - A Game for the 1861 .
- by Larry Owen, 21A Regina Road, Trenton, Ontario. M8V 1G6

This game is modelled after the Arcade style games. Vhen it
first comes uv, it ie in the Mattract" mode, where it alternates
tetween showing the top five scores, and giving a (rather poor)
demonstration of how the game is vlayed.

In the game playing mode, there are two tyres of aliens which
rain down towards the defender at the tottom. Shooting the small
ones earns a score of onepoint, while shooting the large ones earns
five »oints. The small ones, although apvearing at random, come
down in rather copious onantities. They are relatively harmless, as
they can only take one of your three lives by landing on top of you.
Put don't get too close to the~ when they strike the bottom of the
display, as they .tend to srvlat a bit, and can wipe ycu out that way!
The large cnes anpear less often, but are more dangerous; they don't
have to hit you to claim one of your lives, they only have to =ake
it to the bottom, As the defender, you are able to move back and
forth across the bottom of tre display, and to shoot at your
tormenters. Your two srare lives are shown at the top center of
the screen. When you lose a life, one of the spares disappears from
the tov, and reappears at the rottom, always in the center. The
game is over when you have lost all your lives, or when all 200 of
the little beasties have rained down. The number of little beasties
left to come is shown in the top left corner of the screemn, while
your score is shown in the top right corner. There are two objects
to this game. One is just to survive to the end., The second is to ‘
rack up the highest score you can. I can break 200 fairly regularly,
but only once have I managed to wrap the score past the maximum
displayatle of 2°¢F,

This orogram requires 2K of PAM starting at address 0000.
The I/0 assignments are:

002C 61 Turn on 1261 video

00AF 3F Branch if INPUT not pressed
OOB8 3F "

01E4 2F "

N1E9 37 Rranch if INPUT is pressed
0230 3c 1861 Status check

0239 3C "

0240 3 T

01E6 6C Inout from Hex Keytoard
01E? 64 Output to Hex Disrlay

00B2 6C Inprut “rom Hex Keytoard

OOEB 6C "

The “ollowing diagram shows the layout of my keyboard, along
with what key causes what action:

v D E F «4+— Fi-e a shot
8 9 A | B Play A game or Again
= (starts the game ~ode)

Move Defender —» O 1 2 3 e}—fove Defender right
Teft

Must Tre pressed to .| Input

enable any -

ccmmandg,

For other keyboard layouts, you méy wish to change these commands.
They are located as follows:

00 03 0A oF
Le“t Pight Again Tire
0425 042B 0437 o431
0654 065C 0660
065B 06SE 0667
065D 065SF

0662 0661

0643 0665

0664 0668

0666 0669

This vrog—am is actually two programs. The first, residing at
0N00 to 02FF, is a hexacdecimal interrreter, very much like PCA's
C"IF 8. I wrote this program after coming across an article in
BYTE “agazine which described the CHIP 8 instruction set and how to
use it, My version is slightly expnanded, and although I believe
other CH™ 8 programs counld te rewritten to run on my version, I don't
think it would te quite so easy to go the other way., If there is
enough interrest, I could write a future artical on my version giving
the instriuction set, how to use it, and a detailed listing (if the
editor c~n svare thre vages).

The gamwe p~ogram, in interrretor code, resides at 0300 to O&TF.
The video refresh PAY is N7N0 to N7FF, Havpy nrlaying, and watch out
“or those big beasties! By the w2y, a sreaker arpropriatly connected
to O will orovide sonnd effects “or the gane.

-16 -

"Alien" - A Game For the 1861

..

0100 D4 96 SA 45 F2 SA D4y F8 FO AA O5 F4L A5 9F 7C
0110 BS Dy FF 00 30 18 FC 00 45 FA OF 32 11 A7 E2
n120 73 8 73 33 20 9D BC 8D AC 0OA FA 07 BF OA FA
0130 F6 F6 F6 52 F8 EE A8 OB FE FE FE F1 A9 F8 FF
0140 94 SB 08 7C 00 B9 FD 07 33 4C 08 B9 9F AF 94
0150 4C BE 8F 32 SE 2F 9E F6 BE 8E 76 AE 30 52 O9E
0160 09 F3 59 F3 F2 73 19 8E 52 09 F3 59 29 F3 F2
0170 FI 52 OB F1 SB 27 87 32 80 89 FC 08 A9 99 30
0180 12 42 AC 02 BC D4y 45 A3 8C Fy AC Dy OA FA OF
0190 81 A8 08 AD 98 BD D4 OA F6 F6 F6 F6 30 8F 94
0140 OA 38 1E FF 64 33 A2 FC 64 52 8E 5C 94 AE 02
01BO 1E FF OA 33 BO FC OA 1C 1C EC 73 8 73 Dy 8A
01CO OF A7 F8 FO AA 38 27 72 5C 1C 87 3A Cé6 Dy 8aA
01D0 OF A7 F8 FO AA 38 27 L4LC =A 1A 87 3A D6 Dy 86
01E0 Dy OA A6 Dy 3F E4 6C 64 2A 37 E9 D4y OA B7 D4
01F0 4S AF 95 73 85 73 9F BS 8F AS D4 45 AD 9F BD

EO
00
13
D2
00
8c
9L
74
8C
CF
CF

' DE

01
23
EC
FF

€1
6D
7C
7
63
E3
00
31
E3
FE
FD
E1
2B
E3
6L
3

31
c8
FF
BE
00
45
&D
00
45
9E
9E
23
03
23
0OA
00

60
23
3C
00
75
73
A6
13
73
63
63

Ev

00
80
€5
13

-17 -

00
8¢c
00
9%
01
10
D2
7E
05
232
00
23
78
FO
ol
EY4

A6
23
13
00
FO
23
L
73
F2
F2
13
3F
_3
&1
o4
F4

78

6E
CE
OA

8c

96
00
13
30
10
EC

FO
6C
A6
23
00
74
00
13
E3
23
A6
13
6L
A6
bl

E1

oHE&H

06
94
86
45
6C

DE
3B
AE
o
23

71
A6
™
00
A6
00
00
FO
00
13
F2
63
84
F2

FF
96

8D
CF
9%
78
8¢
78
64
CE
FF
3
BE
DE
1A

10
78
0
E2
L5
LC
16
07
co
L0
A0
co
00
00
00

31
96
00
A6
FO
35
64
E3
23
23
96
4B
LF
00
35
00

00

78
DA
9E
05
00
45

2E -

AB
00
00
78
00
78

00
no
00

13
b
00
65
r2
13
20
73
00
00
30
13
00
6L
13
46

08
CE
8D
00
CE
L2
00
05
8D
8D
00
Cé
78
FF
EA
95

00
96
13
7A
F2
w2
00
3F
A6
A6
61
24
24
85
&y
16

64
E1
00
00
96
A6
64

15
w2
60
cA
21
23
&s
16

83

14
23
78
78
A8
A2
06
86
BE
80
1F
24
A8
Ly
12
20

84
60
A6
A6
E1
96
8y
42
0o
FO
15
23
4C

84
85

-18 -

24
00
c9
8r
23
A2
32
1D
78
BE
80
A8
03
00
30

61
P2
Cc3
80
63
I
15

-

E1

15

-

2L
4C
16
16
>3-

85

00
00

03
FO
o1
28
86
23
9E
2l
03
64
16
EO
14

15
14
31
43
A6
83
30
B
63
23
23
16
25
&5
8%
3F

12
EA
00
03
c9
23
00
23
1A
ac
A8
6A
21
EO
21
00

8¢
02
4E
01

06
86
33
24
05
03
82
A6
34
00
00

01
03
00
88
78
22
23
FO
00
8¢
6A

03

DA
00
F2
Eo

23
3C
15
F3
A6

E1
82

1%

60
24
16

F4
15

-

83
16

8c
03
34

88

c9
88
23
30
98
00

0630 70 FF 16 1C 61 20 13 O4 26 34 C9 07 A6 5A F9 88
0640 FO CE 8B 00 23 A8 24 40 2y, 82 23 AR 25 24 L4LC 03
0650 00 78 24 24 4B 0A 00 78 16 34 00 00 03 00 03 03
0660 OF 03 00 00 00 03 00 OF 03 03 60 00 16 1C

670

n680 07 06 OC 06 11 06 16 06 23 06 28 06 -2D 06 32 06
0690 01 06 1D 06 39 06 22 00 18 00 1D 1D 10 28 10 92
0640 FE o0 78 BC 78 DC 78 EC 78 F4 78 20 F8 F8 00 00
06BO | 00 00 00 00 00 0N 00 O 00 O 00 00 On 00 00 0N
06C0 o0 00 00 On O 00 0O 00 0N 0N 00 0N 00 00 09 00
06D0 00 00 00 00 OO0 OO0 00 OO 00 OO OO0 00 00 00 00 00
06EO 23 02 25 CC 4B 0A 16 Fé6 00 2D 26 38 LB 0OA 16 Fé
06F0 26 16 3B OA 16 E8 00 2D 26 34 25 A6 16 E2

AN INEXPENSIVE WIRING PENCIL
- by DPick Thornton, 1403 Mormac Rd., Richmond, Va., 23229 (USA)

When I first decided to use the solder-thru wiring pencil method
for circuit construction, I visited a local store to purchase one
of the Vector wiring pencils. My Scotch blood balked at spending
$10 for a cone-shaped piece of plastic, however, so I decicded to
try making one at home. The result was very satisfying to me, and
the drawing shows my approach.

First, find a block of wood at least one full inch thick and cut
out the shape in the top drawing. Drill the 3/16" hole for the
screw post, and a 1/16" hole for the brass tubing.

Before cutting the 7/16" cutout for the wire spool shown at left

in the second drawing, it is best to have a spool available so you
can use it to test for fit. The cutout should be barely wider than
the spool. Vector sells spools of wire as W32-9DP for 32 gage wire,
and W36-9DP for 36 gage wire, or you can wind your own spools using
sewing machine bobbins and solder through wire. Beldon sells this
wire in a 1/2 pound spool with stock number 8056, if you can find

a supplier.

-20 -

Now sand the wood block so that all the sharp edges are smoothly
rounded, and the front comes to a rounded conical point. Leave
enough wood around the 1/16" hole to support the brass tube, though.
I used a rotating disk sander on a drill with coarse sandpaper,

then hand sanded with medium sandpaper. Later, I added indentations
for my thumb and middle finger, and the result is a very comfort-
able tool. I finished by rubbing it with oil.

The axle for the wire spool is a screw post, available from office
supply and stationery stores. Get the 1" length. To mount a wire
spool, place it the cutout, put the long end of the screw post into
one of the 3/16" holes, then screw the threaded end into the 3/16"
hole on the opposite side. Brass tubing can be obtained from hobby
stores. Cut a piece long enough for about 3/4" extending away

from the front of the tool, smear a little glue on it, and insert
it into the hole at the front. File the tubing flush with the top
of the tool, File any burrs at the tip of the tube. Finally, twirl
the tip of a knife in both ends of the tube to be sure there is

a smooth path for the wire. You will be pulling wire through the
tubing, and don't want to scrape insulation off the wire.

Thread the wire from the spool, along the top of the tool, and down
through the tubing. When using the tool, wrap the wire around the
pin to be wired, pressing the wire between your index finger and
the top of the tool to maintain tension. Be sure to use a soldering
iron with 750-850 degree tip temperature with this wire.

! Saon
s "o e,
, Pay w,
r T — g{(i
' A H M T - - -
| 7,.% P -~
K //6 ’/Ib P’Qd

-21 -

VDU - 126 x 64 Graphics Dump
- by George Musser, 60 Broadway Road, Warren, N.J. 07060

The following is a short, sihple program which dumps
the ACE VDU memory (128 x 64 mode) to an Epson MX-80 III |
printer. The ocutput fills approximately 31 cm by 19 cm, with
the x—axis running lengthwise. Since the MX-80 III can
print a 480 dot graphics line, the program “"expands" each
bit of screen memory to a 7x7 dot matrix on the printer.
While writing this program, I encountered problems with line
spacing controli the correcticn may make the output seem
slightly uneven in darkness.

My printer interface uses EF1 aﬁd output port 2. Ngte
also that, in my printer, switch SW2-3 is set, to give auto-
matic line feed with carriage returns. The program may be

executed at any page bcundary with P=0,

<XX> 00 90 Bl B2 FB 38 Al init. printer PC
0& F8 FF A2 E2 init. stack pointer
oA F8 10 AD init. counter
oD F8 1B D1 F8 31 D1 send line spacing
13 2D F8 01 begin graphics loop
16 AF
17 F8 EO BC 8D AC F8 40 AE init. memory pointer
iF F8 OD D1 F8 1B D1 send graphics mode

25 F8 4B D1 F8 CO Di
2B F8 01 D1

2E OC 52 8F F2 32 37 check if bit 1 or ©

34 F8 FF C8

37 D1 Dt D1 D1 D1 D1 D1 output bit

SE F8 10 increase memory pointer
40 iC FF 01 3Aa 40

435 2E 8E 3A ZE check i+ bit column done
49 8F FE 3A 16 check if byte column done
4D 8p 3A 13 check if rows done

S0 F8 1B D1 F8 40 D1 clear printer

56 o0 idle

37 DO return

S8 3C 58 52 &2 22 30 57 output byte to printer

-22 -

A TWO CHIP EPROM PROGRAMMER FOR THE ELF
-by D. Caughman, 3795 Somerset Dr. S.W.
Marietta, Georgia 30064

The beauty of this programmer is its simplicity! There
are only two IC’s required and no tricky one-shots to
worry about having to adjust. After all with a crystal
controlled clock on the 1802 why not do it with soft-
ware ? (Not everyone owns an oscilloscope!). The
circuit was designed to work with a ELF I1I with

a Giant Board, but if you have an input and

cutput port on your computer it should not be

much trouble to madify it to work; however, the
software will have to be modified for clocks of

di fferent frequencies.

Connectors Ji and J2 connect directly up the DIN

and DOUT port of the Giant Board. Add a jumper

wire from A9-2 to the previously unused pin on

the DIN socket Al16-8 to bring out a buffered @

(Bb). The two series connected 13 volt zener diodes
help clamp any >26 volt transients that may occur
from the switching of SWZ2. Fellow ACE member Byron
Bledsoe suggested this addition to me when certain
brands (but not all) of 27146’s would self destruct.
Since the addition of the dicdes I have not lost a
single EPROM in over a year of use. So if you have
tried building your own and had a simular problem
this might be all you need to get it going. A 74L8244
could be substituted for the 81LS95 but the pinouts
will have to be changed. The 4040 address counter is
incremented everytime an QUT 7 instruction is exe—
cuted. Since this will increment the address on the
first byte, the program writes (reads) address 401H
first then comes back to write (read) address 400H

in the computers memory. This works because the counter
will have overflowed causing 0000 to appear on the
EPROMS address lines. The circuit can easily be
modified to accomodate 2732°s. The program runs at
O300H with the data loaded at 0400H to OBFFH.

Once the routine and programming data have been entered
using your monitor, then the HEX keyboard is to be
used. Since the @ line is used for the programming
pulse, any serial 1/0 using the @ line must not be
used after the EPROM is installed in the socket

with power aon. (That is why the keypad is used).

-

-23 -

. - . -k} - KR - | 4
HFAHH T HHHHHH 11 . SESREEAND RN H HHTHEHEEH HEE : SHESSRRANS
44 4 44- BY N 4-3 |4 .- L1 Ly 34444 L 4+ § 4]
‘ 1 _bfn =311 juud iy I rnriLr 11 JORAG ERNSE S THIHIITE y [TLLELY T
b 44 JREE - 4 -3 |--4-1+ . - 44 -1 4 5 L 4.1 4 - - 44
5 -4 ¥ INRNENRENERUERERERREES 4+ [4 1] [RS UNNNNEEE]
el IReN 4 RAfgANT THIH R PR e 1L I HHH
AN R R NARN AUNEN uN H 11 11 431 any 1] o 11
TEH U T T nf fENEgEEREN] TITTET LT | LshideaHd L HHE
- T T T T T T - gENRERNY/ " A »
T b be el L 3 1 - i
T I ‘ NEEEE HAERPTTHTIETT T R TR B el THAT
mr 1T s 1 N 11 \ 1] " angund LEm
TEE T 1] FHHHRTHH LINTPRE (11 1y f . LT
L4t 14 +14- 114 44 S E - R £ {43444 +1 4 1H- B4 23308
] 17619 E
. %4 x_.aAlv:f - +-+-+4-1+1- 3 Lll
1 L1 \ “ |- § - ..
1
= i &
[i T
- - -1 L M{t - 44
[o . L.
m 1 4 L hm ﬂ -} - L LI L) . -4 - -1 s 1144
A ST PR R P AR T T ! , LTI T T H NN g QEEEE lukpy
HNTIH QLTI ull ST A H A i Euladil] 1
T v 1T N | [TVLT &\ 1t LHHF 1t 371 T T} B
B | pRAEN AN e AN ﬂﬁ] IEEEE Y e Ny u e gueny n SR ERERE L/ nuS yul Tt I
1454) b 44 5 . e 4944 4. R [} 31
- —4 m 1 - S E % ‘ 11
mwn, P &... L] id 4 1 SRR EndSaMANRA RS
3 K b 1
A T S L S R [T RparHT
B u.? qT W_Zm.vu 4+ a9 &1i- E -+-1 44 -1-+-1 144 r.—, L 4)44 P
T 1 i -] & Q 1] -
101 TETEH, 1 DRRI T samarcasenapRingaeantil piaiis
b 11131 - T 14 L 1% ¥ -} 1 4141 14 44
gds ENER N Ao EN NN
T HHHHHT LEET HHHETHEY Juts .‘Li, HHHHT T
IH... us | 1.k - - 1141 N
ISSSRRESE HHETTHEH HIH BT THT noei B .

" 122 13 14 15 16 17 18

10

24

18

17

14

12

*G0 O1FO00

#

0000
0300
0301
0303
0304
0506
0307
0309
030A
0308
030D
Q30E
Q30F
0311
0312
0314
0313
0317
0318
031A
031B
031C
031E
0320
0321
0322
0323
0324
0326
0328
032A
032C
032D
032E
Q32F
0331
0332
0333
0333
0336
0338
0339
O33B
033D
033E
O33F
0341
0342
0343
0344
0345
0344
0347
0348
0348
0348

7A
FBO3
BD
F84B
AD
FB804
BA
EB
F801
AA
AB
FB808

FBOS
3231
FBOF
J231
EO
&4

3000
2C
eC
3A38
8c
3238
DD
3031
F804
BA
BB
FB800Q
AR
BB
AB
DD
EO
&4
cc

START:

OWRD:

NCNT:

DNE:

.a can

-24 -

ORG #0300
RER
LDI #03
PHI RD
LDI #4B 3 GET PROGRAMMING ADDRESS
PLO RD
LDI #04
PHI RA ; LOAD WRITE POINTER
PHI RB ; LOAD READ POINTER
LDI #01 ; LOAD READ AND WRITE POINTER WITH

PLO RA ; LSB+1 SINCE HARDWARE COUNTER IS INCR.
PLO RB ; PRIOR TO READING OR WRITING

LDI %08 1 LOAD BYTE COUNTER

PHI RC

LDI #00

PLO RC

LDI #1F ;SET UP STACK POINTER

PHI R2

LDI #FF

PLO R2

SEX R2

BN4 H1 3 WAIT FOR INPUT

B4 H2 ;3 O7=READ O8=WRITE

INP 4

ouT 4 s DISPLAY IT]

DEC R2 3+ RESTORE STACK POINTER

LDX

XRI #08 $READ OR WRITE ?

BZ OWRD

XRI #OF

BZ OWRD ; CHECK FOR ILLEGAL CODE!

SEX RO

ouUT 4 ; EE=ERROR

BYTE #EE

BR START

DEC RC ;DECREMENT COUNTER

GHI RC

BNZ NCNT

GLO RC

BZ DNE

SEP RD ;START PROGRAM MODE

BR OWRD
LDI #04
PHI RA
PHI RB
LDI #00
PLO RA
PHI RB 3 THIS IS BECAUSE THE HARDWARE CNTR
PLO RB ; WILL OVERFLOW TOQ 000

SEP RD ;GO TO SELECTED MODE ONE MORE TIME
SEX RO

OUT 4 ; OUTPUT COMPLETE FLAG "CC’

BYTE #CC

DONE NOW GO BACK AND PROGRAM
OR READ THE FIRST BYTE

- 25 -
0348 3000 BR START
034a DO EPGM: SEP RO
0348 E2 SEX R2
034C FO LDX ; CHECK FOR MODE (READ OR WRITE)
034D F6 SHR
034E 3360 BDF READ
0350 EB WRITE: SEX RE ; WRITE MODE
0351 &7 ouT 7
03%2 FBO08 LDI #08
0354 BE PHI RE
0355 FB47 LDI #47 ; LOAD SO MSEC TIME CONSTANT
0357 AE PLO RE ; IN DELAY COUNTER RE
03IS8 7B SER : START PGM PULSE
0359 2E LP1: DEC RE
03ITA GE GHI RE
035B 3AS9 BNZ LP1
03D 7A RER
03SE 3I04A BR EFGM
0360 EB READ: SEX RB 3 READ MODE
0361 &7 ouT 7
0362 2B DEC RB ;RESTORE PTR
0363 &F INF 7 ;
0364 1B INC RB
0385 TO4A BR EPGM
0367

S
4,
S.
&.
7.
8.

3.
4.
S.

STEF BY STEFP PROCEDURE
FOR PROGRAMING AND VERIFYING

FPROGRAMING EFROM

Flace data to be programmed at 0400H to OBFF
of the computer memory.

Load program and execute.

Verify SWi up and SW2 (24 VYolts) down.

Insert EFROM.

Apply +5 volts.

Set up the 25 volt supply, then set SW2 up (on).
Push counter reset button S3.

Enter "08" on the keypad, press input key and
wait approximately two minutes for "CC" to
appear.

Set 82 down to disconnect the 25V supply.

TO VERIFY
Load and execute program if not already done.
Flace SWi1 and SW2 in down position.
Apply +5 volts.
Press counter reset switch.
Enter "07" on the hex keypad, then press the

. input key. A "CC" should appear on the hex

readout almost instantly. Data from the EFROM
should now be at 0400H to OBFF in the computers
memory.

- 26 -
Adding the 1861 Video Display to the ACE CPU Board
- by Larry Owen, 21A Regina Road, Trenton, Ontario.

M8V 1G6

Although there are other, more powerful, video display controllers
around, there are still those of us who 1like to play with the
capabilities of the 1861. Considering its price and the amount of
software available for it, I thought there might be others who are
interested in how to hook it up on the ACE CPU card.

The following two diagrams show a schematic and a suggested parts
placement guide. In order to differentiate the components in this
circuit from those already on the board, I have added 100 to their

numbers. The components required are:

Ulo0l 1861
Qlol 2N2222
D101 1N4148
D102 1N4148
R101 10K
R102 2K
R103 1K
R104 30
R105 200
R106 22K
R107 22K

These components are located in the breadboard area as shown, with the
resistors mounted on the end. Most of the 1861's required connections
can most easily be made at the board's buss connector, while a couple go
directly to the 1802 CPU. Two more are shown going to Jumper 10. These
select the N-Line Decoder outputs Port 1 (to enable the 1861) and Port 2
(to disable it). These, along with the Display Status signal going to
the 1802's EF1 flag, will make this circuit compatible with software
written for Quest systems, amongst others. Some people may wonder at
the lack of isolation diodes from the 1861's DMA and Interrupt Request
lines; they are not needed here because these 1861 outputs are from
open drain transistors. If the 1802's EFl line is ever required for
another purpose, the 1861 will have to be removed from its socket, as it
activates this signal even when it is turned off (by a software

command) . +5 +5V,
4z o101 k106 U7-39 —Y cClock Voo B
o3 |2 KT 2) DMA Req Clear
g gg— I Req CourolA F2— Busb
0" piog 4 -T 4 : , 21
PP -7 o Bus-T SyneRet, (prrol 9 F— Bus7
L /l, +5 Riol __5| 20 9
o +5 2 ' Bus-K | Load D7 P Hus-
ui s §ER“7 Cow 5)11«. Dé T Bus-l0
4019] // //l ,/,’ . t_ Guol ‘V;'j:o Uy 19 Bus-ll
,/ ', R(83 u7-3 21 Reftf/” Dl{ (7 Bll}"lz
/) {
s/ Rio Pus-19 — Disp.stet: p3 He- Bysi3
7 ' 4 Jumperio~Pi 2] Dfo,On P2 3 Bus-4
uz Xt f“:‘is E Tumperlo-P2 =1 Digp.ore D1 (A= Busis
1502 PT— 4 Vs Ric” 2 6d, po 2~ Buslé
Composite - Uioi
Video Cutput = - 1l
vo Hou i fov or

TV RF Medyletor

-27 -

Homebrew ELF Enhancements and a Mini Chip 8 Game
- by A. Boisvert, Quebec, P.Q.

After reading the first page of the last IPSO FACTO, I decided to
contribute by doing this article. I have a homebrew ELF from Popular
Electronics articles. I have replaced the data switches by a hex keyboard
made of TTL ICs and diodes for the decoding circuit. (See diagram). I am
using the cassette interface suggested by E. McCormick (P.E. Feb. '78). I
have a cheap cassette recorder that works fine with this interface. I have
removed the speaker from the recorder and replaced it with a 10 ohm 1/2 W
resistor with a LED in parallel with it. The LED serves as an output
indicator.

V QUTPUT
10n A

Yow < e

The following program is called HEX GAME, that Paul Moews wrote in one
of his booklets. His mini CHIP-8 loads into memory from 0068 to QOFF.
It uses 10 of the regular CHIP-8 instructions plus two others (keyboard
read and write display). HEX GAME uses memory addresses from 0000 to
0063. I have included a description of the MINI CHIP-8 instructions.

The idea of the game is to have others try to guess a secret hex byte
that you have entered in the computer. Each player is allowed five
tries to guess the hex digits.

At the start of the program, enter the secret byte then the number of
players. (Maximum is 09). The computer will then display 01 for the
first player who will enter his selection and hit ENTER (IN switch). If
he guesses the secret byte a tone will be heard to indicate he is the
winner. If the value entered is not equal to the secret byte the ELF
will display AO (Value too HI) or BA (Value too LO), and then display a
player number. If the secret byte is not guessed after five rounds, the
computer will display it and restart at the beginning of the program,
after generating a tone.

OOMM

1oMM

20MM

4XKK

6XKK
8XY0

8XY1

8XY2

8XY4

8XY5

DXKK

FX00

6~ 00
7- BC
8- F6
9- F9
A- D4
B- 15
C- 45
D- 52

E- 37

00
F8
Fé6
FO
BS
85
FA
Fé6
FO

00

- 28 -

MINI CHIP-8 FOR ELF

MINI CHIP-s INSTRUCTIONS

Do a machine code subroutine at location MM. (The machine code
subroutiqe must end with D4)

Go to location MM in the program written in CHIP-8.

Do a CHIP-8 written subroutine at location MM. (The routine must
end with OO9E).

Skip next program instruction if Vx does not equal KK. (KK =
constant).

Set variable Vx equal to KK
Set variable Vx equal to Vy.

Logically OR Vx &Vy. Result in Vx, (Vf is modified by this
instruction).

Logically AND Vx &Vy. Result in Vx. (Vf is modified by this
instruction).

ADD Vx & Vy. Result in'Vx. (Vf is 00 if sum is less or equal to
FF, 01 if sum is greater than FF).:

Subtract Vx & Vy. Result in Vx. (Vf is 00 if Vx is less than
Vy, 01 if Vx is greater than or equal to Vy).

Display Vx on hex display for KK time. (KK set to FF gives a 2
second display).

Read keyboard (switches) into Vx. Wait for the ENTER (IN SWITCH)
to be pushed and released.

2 3 4 5 6 7 8 9 A B €C D E F
00 00 00 00 00 00 F8 00 B2 B3 B4 B5 B6 B7
68 A2 F8 7A A4 F8 02 AS D4 E2 45 AF F6 Fé6
32 98 F9 A0 AC 8F F9 FO A6 05 F6 F6 Fé6 Fé
A7 OC A3 D3 30 7B 45 30 94 45 56 D4 42 AS
BO E5 B8 E5 9B E5 CO E5 E5 E5 ES E7 E5 DD
22 52 25 45 A5 D4 45 E6 F3 32 BF 15 15 D4
OF 3A C8 07 56 D4 AF 22 F8 D3 73 8F F9 FO
07 D2 56 F8 FF A6 F8 00 7E 56 D4 7B 3F DE
E6 6C 7A 45 D4 E6 64 45 BF 2F 9F 3A EB D4

00 00 00 00 00 OO OO0 OO0 00 00 00 00 00 OO

ADD. CODE
0000 3068
0002 63A0
0004 64BA
0006 6AEE
0008 6B09
000A 6501
000C 6005
000E F600
0010 FDOO
0012 DD40
0014 8BDS
0016 4F00
0018 103C
00l1A 6COl1
001C DC40
O001E FlOO
0020 D140
0022 8165
0024 4100
0026 1040
0028 4F01
002A 1030
002C D440
002E 1032
0030 D340
0032 8D55
0034 4D0OO
0036 1058
0038 8C54
003A 101C
003C DA20
003E 1010
0040 0044
0042 1008
0044 F8FFA8)
0047 7A88A9)
004a 2989)
004C 3A4A)
004E - 3147)
0050 7B2888)
0053 3257)
0055 3048)
0057 D4)
0058 8DCO
005A 8055
005C 4F01
005E 10l1A
0060 D640
0062 1040

-29 -

DESCRIPTION

BRANCH TO INTERPRETER

SET V3 TO A0

SET V4 TO BA

SET VA TO EE

SET VB TO 09

SET V5 TO O1

SET VO TO 05

PUT SECRET BYTE IN V6

PUT NUMBER OF PLAYERS IN VD
DISPLAY IT

VB-VD TO FIND IF # OF PLAYERS IS VALID
SKIP OVER IF VALID

GO DISPLAY EE, # OF PLAYERS OVER 09
SET VC TO 01

DISPLAY PLAYER #

PLAYER INPUT

DISPLAY VALUE ENTERED

Vi-Vé TO FIND IF VALUE IS GUESSED
SKIP OVER IF NOT GUESSED

GO TO WIN TONE ROUTINE

TEST VF TO FIND IF VALUE ENTERED IS HI OR LO
GO DISPLAY A0 VALUE TOO HI
DISPLAY BA VALUE TOO LO
PROCEED WITH NEXT PLAYER

DISPLAY A0

DECREMENT # OF PLAYERS BY 1

MORE PLAYERS LEFT

NO, TRY ANOTHER TURN

YES, ADD 1 TO VC

NEXT PLAYER TURN

DISPLAY EE (ERROR)

TRY AGAIN

BRANCH TO TONE SUBROUTINE (WIN)
RESTART GAME

TONE ROUTINE TO INDICATE A WINNER

SAVE # OF PLAYERS
SUB. # OF ROUND BY 1
MORE ROUND LEFT

YES, GO TO PLAYER #1
DISPLAY SECRET BYTE
GENERATE TONE

+5.
8.1k |
7408
+
F g - ARy n M Strobe S
s S N E|. B4 |,
o oo Tw —5 N\ e
D | pu— . s
c | 342" 3
B L—s s e Y hle ""S_uﬁ Strobe
1 - =< - —
. ﬁ\ﬂﬁ, '*k”—\ﬂ“\v Ix B; o
9 T Y I N L L1 3 > 7408
" 4) 2 DATA
8 -~ -\‘I\’ ‘\‘Ij élSK 7474 b—b_‘EEVDY
])
) 7
T
. T T 1
| S .
'\‘I\ %» ‘ 72 Keyboard
5 |~ - ~ ready
T S ::: e i Seon @ 1
p " .
N - ¥ ‘f Tx
21l :‘v\:\”\' O_V ————<A
r——/f - 4 3 s>
o M 2 ¢ 10—t
— 4
, ! _ Tayisrs
1 " s 45¢v
| L .8
. v : T
.K' L—l * 10— 3
+5v ENTER O] % '3 1 F 5 3 5
“ 10
Tquesis?
HEX KEYBOARD. —— NaLh : Lol LL -

® [
X YRYROARD CTWCUTT. J__

- 0 -

-3 -

AN 1861 TVT FOR FORTH
-by David Ruske, R2 Box 250, Waupun, Wi, USA 53963

I was a 1little frustrated. . .just when I had my ACE dynamic
board going with enough memory to run FORTH, my TVT board de-
cided to go on the fritz. (Anyone know where I can get a 9324
without a $50 minimum order)? Not having a copy of Tom Pittman's
DOTS program, I decided to write my wsn. The display is 16%16
(funny looking but readable), and features carriage return,
backspace, home/clear, and automatic scrolling. Register usage
does not conflict with FORTH, and Registers &4, 5, and 6 are left
free for SCRT. The program itself occupies 1 page, the dot table
takes 1 page, and 4 pages are used for display. I have the
program located at page EA; for a different location modify the
underlined bytes. Credit for the dot table goes to T. Creviston,
TVT for the 1861, IPSO #17. You must initialize RE to a spare
location ,» I used EAFE. No value is assumed on entry. Additionally,
Your FORTH initialization code should initialize R2 to the return
stack location (see FORTH Implementation Notes by Tony Hill, IPSO
#29) for the benefit of the interrupt routine, and R1 should be
initialized to the interrupt routine (EAEC in this listing).
Lastly, it should turn on the 1861 (E2 69 on ACE systems). Note
that while FORTH is running the display may jitter, since FORTH
uses several 3-cycle instructions. The display is stable while
FORTH is waiting for an input, etc. For this listing, the entry
point for EMIT is EA0O, and CR enters at EAQ€.

Closing comments: thanks to anyone involved in putting out the
ACE dynamic board! Tony Hill: thanks for creating a program
like window. I anxiously await PEEPHOLE,

EAOO 19 09 A7 (Get char. from FORTH, put in R7.0)
03 29 29 29 (Clean up RS for FORTH)
06 EE (X=RE).
07 87 FB 0D (Is it CR?)
OA 3A 2E (If so,)
0C EE (Make sure X=RE again for CR entry)
0D &F FF FO (Is position F0?)
10 gB C9 If so, go to scroll)
12 8F FA FO Else mask off lo nibble)
15 FC 10 (Add 10 (all #s in hex))
17 AF (And replace the position pointer)
18 FA CO (Get bits 6 and 7
1A 7E 7E 7E (Shift to bits 0 and 1)
1D EE (NOP)
1E FC EC B8 (Add to disp. page start, put in R8.1)
21 8F FA OF (Get lo nibble
24 F6 SE (Shift right and store it)
26 8F FA FO (Get hi nibble)
29 FE FE (Shift it left twice)
2B F4 A8 (Add to stored byte and put in R8.0)
2D DC (Return to FORTH
2E 87 FB 08 (Is it Backspace?)
31 3A 38 8F (If so,)
34 32 37 (Return if position is 00)
36 2F E Else decrement position and)

37 DC Return to FORTH

87 FB

FO

B?7
co
7E

EC B8

OF
FO

F6
oF

FO

01
OF
FO
08

28

A7

F6

F1

F1
A8
A7

F6

58
58

- 32 -

(Is it Home?)
(If so,)
(Force position to 00)
(R8 will be pointer tc disp. page)
(EFFF is hi byte of disp. pages)
(Zero the byte and decrement pointer)
(Is pointer hi=page below display?)
(If not, go back and do it again)
(Return to FQRTH)
(Assume valid char...is it o0dd?)
(If so, set Q)
(Subtract 20 from char.)
(Get the lo nibble of this)
(Shift it right and store it)
(Get the hi nibble of this modified byte)
(Shift it left twice)
(Add it to lo nibble and keep it)
(R7 is now dot table pointer
(Get bits 6 and 7 of position)
(Shift to get these in bits 0 and 1)
(NOP)
(Add to disp. page start)
(Get 1o nibble of position)
(Shift it right and store it)
(Get hi nibble of position)
(Shift it left twice)
(Add it to lo nibble and keep it)
(Preserve position byte)
(So R8 can count to
(Is position even?)
(If not,)
Is char. even?)
If so, shift right four times)
and continue)
else get lo nibble of table byte)
and continue)
If pasition and ckar. are even)
Use hi nibble from table)
and continue)
(Position is even, char. is odd)
(Continue here; store prepared byte)
(Position odd?)
(If not,)
(Mask off hi of prev. byte and OR)
(and prepare for next loop)
(else mask lo and OR it in)
(Add 8 to Memory pointer)
(Add 8 to Table pointer)
(Decrement count
(If 0, continue, else loop)
(Kill Q for next time)
(Restore position)
(Is position FF?)
(If not,)
increment vosition)

FTNTTN NSNS TN N

57
BF

78
BO

A0

B8

E2 E2

3
62
20
A0
Lo
LE
82
A8
48
E6
88
8A
86
AA
AA
AE
LA

4
28
Li
L
28
EE
AA
A2
E2
AE
AL
AL
AE
AA
AA
A4
AL

- 33 -

(Return to FORTH)

(New position=Fo0)

(EG is lowest display page)

(R7 is source byte for move (scroll))
(R8 is destination byte)

(Get source byte, store at destination)
(Increment source and destination)

(Get R7.1)

(Is it above display area (FO=disp.+1))
(If not, loop)

(R? is now EFFF)

(Erase byte)

(Set next byte up)

(Line erased yet?)

(If not, loopy

(0therwise return to FORTH)

(Interrupt routine)

(Initialize R1 here (EAEC))

Dot Table

5
0o

AL
AL
00
00
22
00
22
2A
2C
2C
La
E6
24
84
E6

6
00
00
00
Lo
00
Lé
L6
00
8A
8E
8A
EA
0oC
84
24
ocC

7 8 9 A B C D E F
00 04 AA EO 62 44 44 00 00
02 O4 OA E2 40 44 L4E 06 04
08 04 O0A E8 A0 44 4L 40 40O
4O 00 00 00 00 00 00 80 00
OE AC A2 68 A2 4A 00 20 8A
L2 AL E6 EC C4 EE 22 80 24
Li AL 82 22 A8 A2 22 20 80
o4 00 00 00 00 00 04 00 00
AE EA A8 A8 88 A4 2A 8E AA
EA AA E8 AC C8 E4 28 8E EA
EA EA A8 A8 8A A4 AA BA AA
AE 00 00 00 00 00 00 00 0O
00 AA AA LA AA AA 24 04 4o
A0 CA CA LA AE 4h L4 44 00
00 84 AA LA AE A4 8L 04 00
00 00 00 00 00 00 00 00 OE

- 34 -

ADDITIONAL NOTES:
18 VT _FOR FORTH

There is a small problem in using an interrupt routine with
FORTH. When the interrupt occurs, the stack pointer (R2) is
decremented to the location where the main program's PC and
stack pointer will be stored. Thus, the main program (in this
case FORTH) must never have R2 incremented above valid data,
which would be lost if the interrupt occured at that point.

The only problems I have encounterad so far involve the words
LOOP, +LOOP, and I. Tony Hill told me how to fix the loop words
LOOP and +u00P, and these fixes showld appear in one of his more
recent articles. The I word was fixed as follows:

1425 92 B8 82 A8
29 18 19 19 19
2D 148

2E CO XX XX

XXXX 59 29 08 59 DC

The bytes XX XX may be any spare five byte location in memory,
where the remainder of the code is stored. You may wish to locate-
this after your I/0 routines or between your initialization code
and FORTH.

gge following routines may come in handy when using this TVT:

X

+ HOME 0C EMIT ;

INVERSE EC00 EBOO DO I DUP C@ FF XOR SWAP C! LOOP:;

(This routine gives inverse video the first time the word
is invoked,, normal the second time,,etc. Substitute the
end of the shape table page *+ 1 and the beginnin§ of the
shape table page for ECO0 and EBOO respectively.

CREATE TVOFF EE C, 61 C, 28 C, DC ' C, SMUDGE

CREATE TVON EE C, 69 C, DC C, SMUDGE
(Turning the TV off during calculations will improve speed
---the 1802 won't spend half its time refreshing the display.)

- 35 -

Mes Text Editor Modifications

- by George Musser, 60 Broadway Road, Warren, N.J. 07060

I have made several -modifications to Steve Nies’ Text
Editor in order to increase its usefulness as word processing
software. The original program listings of The Monitor ver-
gion II (SYSMON) and The Text Editor (SCRIPTORY) may be
found in Ipso Facto issues 20 and 23. I give all due
credit to Steve for two excellent programs.

The first set of patches allows an emulation of
upper/lower case characters using the 6847. Upper—-case char-
acters are now displayed as inverse, and lower—case as nor-—
mal. Required changes are to OUTCHAR and the monitor MAIN
BODY. A new INCHAR routine (which flashes the cursor) is
supplied as well as an additional OUTCHAR routine.

A second patch allows faster entry of text by, when the
right side is reached, simply scrolling the screen halfway
over. Previously, the screen scrolled only one column,
thus making text entry very slow.

A third series of changes helps accomodate printer con-—-
trol codes with a new EDIT subcommand; Escape. Press ESC
and the desired control code; this code will be stored
directly in memory. Control codes print as the inverse of
the corresponding character between 20 (SP) and 3F (?)3 for

example, control—-@ prints as inverse “1".

- 36 -

The fourth routine is an additional Text Editor com-

mand:

15) FORMAT AA BB CC

This command allows a simple formatting option: margins and
line spacing. Specify the left and right margins in hex as
AA and BB respectively; CC determines line spacing. The rou-
tine will enter the Get parm mode and wait for you to indi-
cate the block of memory to be formatted. Briefly, this pro-
gram works by removing all carriage returns and then
replacing them according to the desired margins. When the
break between lines occurs in the middle of a word, the rou-
tine will stop and allow you to specify hyphenation: type in
the characters to be left on the upper line, or hit the car-
riage return for words not to be hyphenated. Memory loca-
tions 8§ A, 9B, and 9C are used for storage of values.

<X1> and <X2> are simply any two new pages.

LISTINGS

(i) Changes to MAIN BODY (The Monitor version II):

1 38 €O <X1> 00 CO P &3 new 1/0 vectors

Changes to OUTCHAR:

3'65 73 entry - save char.
78 08 FB 80 S8 turn cursor off
7F €O <X1> 36 branch to char. convert
AA 08 FB'SO S8 turn cursor on
Cci 42 B8 02 restore R(8).1, char.

New INCHAR routine: uses EF3 and input port 7

<X1> 00 97 73 87 73 8F 73 save R(7) and R(F)
Q6 FB8 8§ BF FB 95 AF init. R(F)
oc 4F B7 OF A7 ' get cursor location
10 07 73 save character
12 F8 18 BF 07 FB 80 57 flash cursor
19 2F 9F 32 12
iD 3E 19 &F check if key pressed
20 F8 FF AF do debounce delay
23 2F 8F 3A 23
27 36 12 check for bounce
29 12 42 S7 42 AF 42 A7 02 B7 restore char., R(F), R(7) .
32 &F FF 00 DS return

~— adapted from Tony Hill’s Window

(ii)

iii)

(iv)

- 37 -
Character conversion routine:

<X1> 3& CB § éA
39 FF 21 3B 44
3D FF 1A 33 44
41 FC DB BF
44 9F FF 61 3B S0
49 FF 1A 33 S0
4D FC SB BF
S0 9F FA BF CO P 83

Modification to CURSOR RIGHT:
R F4 CO <X1> S&

New Routine:

<X1> %6 F7 CB R F7
sA 8F FC 10 AF
SE 8E FF OF AE
&2 D4 @ EE
&5 CO R BD

Modification te INSERT CHAR:

Y aD CA <X1> &8

New routine:

<X1> &8 9C FB 1B CA R BD
&E D4 8 &4 3B &E

73 FF 20 C3 R BD .
78 9F SD FC A0 CO V S3

Modification to SCREEN PRINT:

R SB CO <Xi> 7F

New routine:

<X1> 7F FF 20 CF FC A0 FC 20
86 D4 8 &7 DS

Modification to command table:

@ E3 01 <X2> 00

New command table entries:

<X2> 00 43 48 00 Y 87

0S 4F Q00 <X1> oOC
09 FF 00 00

check if control char.
check if upper—-case

gheck if lower—-case

return

branch teo patch

check if past edge
increase scroll cocunter
adjust screen position
display new screen
continue

branch if not contrel-C

check for Escape

wait for keypress
check if contrel char.
store, print char.

branch te patch

check for contrel char.
print appropriate char.

command table extension

(Change)
(Format)

reserved for table extenéion

New routine:

<X2> 0C
14
iB
23
2A
2E
32
36
39
JE

44
an
4F
50
58
SB
&0
&S
&A
&F
76
7B
83
88
8E
97
9B
A3
AC
B4
BS
BC
c2
cA
D3
D&
DE
E7

D4
D4
DA
F8
oC
D4
ID
D4
D4
iD

2D
91
iD
DA
DA
D4
D4
iD
0D
2D
9D
4D
D4
F8
12
8%
F8
F3
F8
91
D4
D4
DA
DA
co
F8
87
9F

<X2>
LX2>

D4

80
D4
8cC
DD
8D
A2
F7

20
81

A7
A

8B
80
20
oD
8D

DD
AT
F4
A7
A7

A7
81
A2
F7
A7
1D
46
B7
8E
I

Dé
Dé
DA

AE
8c
Al

20

SD
AD

F8

32
3A
32

73
&7

D4
AD
ib
F8
iD
F8
AD
iD

F8
D4

F4
B3

Al
3B
36
45

4A
32

30
38

20

AC
aF
SB
A7
20
1D
20
AO

12
20

F8
0D

oD
o1

AE
DS

D4
D3
81

-y

Dot

3&

36

D4

3A

80

0S
02

D4
oD
D4

D&
D4
3A

AE
9E

- 38 -

<X2> Dé6 AO get margins

FF 01
DA 34
D3

LX2>

&F

3A 7B

7C 00

<X2>
SD 30
I B3

<X2>
cC 30

8C DS
7€ 00

DE

BD

DE
aF

E7
B8

BE

get line spacing

store values

get limits

prepare parameters

print Form Feed

save starting address
find CR/FF

check if finished

check if next byte is space
(to maintain paragraphs)
change CR/FF to space
restore starting address
increment pointer

create left margin

store line length

check if done

check for CR/LF/NUL
check line length

check if space

backspace to first blank
save location

print word

print question mark

get hyphenation
hyphenate word

check if hyphen to be stored
make room for hyphen
store hyphen and CR

end of CR insertions
restore starting address
find CR/FF

check if done

insert new line spacing

parameter error
get value
adjust R(E)
call MOVE LINE

-39 -

RELOCATE
by M.E. Franklin, 690 Laurier Ave., Milton, Ont. L9T 4R5

This program is designed to facilitate writing hex code in RAM for later relocation to EPROM or
or another address location. The program steps through a source code looking for SCRT calls
(n4) or long branches {CO, C2, CA) and adds a preset off set to the page value when found,
providing certain conditions are met, ie. that 1it is not a stack page, a monitor page etc.

0f course, the program does not correct Load Immediate or calculated addresses. Even with its
shortcomings, this is a handy riece of code for the HEX programmer.

18688 F&lo LDI #1@

1682 BA PHI RA Set length of source program in RA Main program
168 F308 LDI #68

168 AR PLO RA

iggg B;GG ;3% g?ﬁ Set start address of source in Rl

1e@s Fesa LDI #8046

186E A1 PLO R1

18ge. B1 LDN R1 Load. program byte

168D FFD4 SM1 #D4 Test if Call or Tongbranch instruction

166F 322B BZ #2B Branch to fix routine if true

1811 o1 LDN R1

1812 FFCa SMI #Ca

1814 322B BZ #2B

1816 @41l LDN R1

1817 FFC2 SMI #C2

1819 322B BZ #2B

1618 @41 LDN R1

ie1C FFCR SMI #CA

181E 322B BZ #IB

teze 11 INC R1 Inc source program counter Next byte
1821 2A DEC RA Dec count

18622 3R GHI RR Test if done

1623 3AR6eC BNZ #QC Loop if not

1825 SA GLO RA

1azse 3AGBC BMZ #8C

18238 COFEGSGQ LEBR #FEGOOG Exit to monitor {if true

1828 11 INC R1 Inc source program counter to page byte Fix routine
13zc a1 LDON R1 Load page“ yte Exclusions
1820 FFFE SM1 #FE Test for exclusions - stack at FEFF

162F 3244 BE #44

1831 81 LDN R1

1632 FFCa SMI #Ca - first page of monitor

1634 3247 BZ #47

1636 a1 LDN R1

1637 FFCY SMI #C1 - monitor routine page

1833 2247 B #47

1aZ8 121 LDM R1

{63C FFCT SMI #CT - monitor I/0 page

163E 3247 ES #47

1as4a 81 LDM R1 Load page byte

1841 FCZ8 ADI #3@ Add off set to page value Off set
1847 3 L5KP Skip N
1844 FSFE LDI #FE Make stack page FE Stack fix
1845 St STR R1 Store in program source -
147 11 IMC R1 Inc source program counter

1843 2/ DEC RA Dec length count twice

1a4% 2R DEC RA

1644 30249 B2 . #20 Branch to Next byte

S @Siaal

201 45338

- 40 -

Minugs 5 Volts for the 64K Dynamic Board
- by Don Stewart, 3001 Fleet Street, Coquitlam, B.C.

I recently assmebled the ACE 64K board, tried it with ome 4116 chip and it
worked; I put in the next 7 and they all worked; I shut off power to fix
some details and destroyed the DRAMs by unplugging my supplies in the wrong
order. True, they should all be on 1 power cord but the =5 VDC was a new
supply.

So that I wouldn't do that again I have incorporated 2 Intersil 7660 Voltage
Converters as shown to ensure that if either the +12 or +5 VDC is present I
will have my -5 VDC. Also this is much cheaper than another supply. Really
only one converter should be required, but the second one seemed cheap beside

the price of 8 (now 24) DRAMs.
(38)
[

:Izﬂqyl;
T 9w

This fits very easily in the "kluge" area, and cost about $10.00. I would

suggest that the 10 mfd. reserve cap be beside the 7660's, install the 10 mfd.
cap which is part of the board design in addition to this one. Also, I should ‘

o

Ll

mention that the polarity mark on my PCB is reversed for_.the -5 VDC cap.
I have been most pleased with the board - lots of memory in little physical
space, well thought out, good artwork and clear instructions - very well done.

e Jodo e ke e de Jodo do Jededo dode de e e de dode e dedede Jede de e e g dodo e e e de e e e dede de de Jede de de do e e e de Je e de g Fe Fe e dede ke Koo dode g dede K Kedede ke Kede deke

1802 MICRO COMPUTER CONFERENCE

20 August, 1983
SHERIDAN COLLEGE, OAKVILLE ONTARIO

A full day of speakers and demonstrations on micro computer products,

including the latest information on the RCA 1800 series products.

The program and events are oriented to hobbiests, and to industrialists

who use micro processors for control or processing applications. ‘

CLUB COMMUNIQUR Rev. 83.04,.01
NAME : DATE:
PRODUCT ORDER QUANTITY UNIT PRICE TOTAL
CPU Board $40.00
Backplane and I/0 Board, Ver. 2 40.00
Front Panel (with EPRGM Burner, Clock) 35.00
1/0 Adapter for Backplane, Ver. 1 20.00
64K Dynamic (4116) Board 50.00
EPROM (2716/32) Board _ 40.00
Kluge (wire wrap) Board 25.00
Netronics - Ace Adapter Board 25.00
DMA Adapter Board (ELF 1II1) 3.00
VDU Board, Ver. 2 40.00
Software ,
Fig FORTH - Netronics Cassette $10.00
format (6K) 00COOH
Tiny Pilot - Netronics Cassette $10.00
format (2K) 00OCH
SYMON - Netronics Cassgette $10.00
format (2K) COQOQOH
Back Issues
“Defacto” Year 1 - 3 (Edited) $20.00
Year 4 Reprint 10.00
Year 5 Reprint 10.00
Membership
Current Year - Sept. '82 - Aug. '83
includes 6 issues of Ipso Facto
Canadian $20.00 Cdn.
American 20.00 U.S.
Overseas 25.00-U.$.

PRICE NOTE

Prices listed are in local funds. Americans and Overseas pay in U.S.
Funds, Canadians in Canadian Funds. Overseas orders: for all items add
$10.00 for air mail postage. Please use money orders or bank draft for
prompt shipment. Personal cheques require up to six weeks for bank
clearance prior to shipping orders.

SALE POLICY

We guarantee that all our products work in an A.C.E. configuration
microcomputer. We will endeavour to assist in custom applications, but
assume no liability for such use. Orders will be shipped as promptly as
payment is guaranteed.

_MAILING ADDRESS:

PHONE NO.:

Note: Ensure msailing address is correct., complete and printed.
Please ensure payment is encloued.

ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
C/ o M.E. mll
-690 LAURIER AVENUE,
‘MILTON, - ONTARIO
L9T 4RS

