Ipso Facto

ISSUE 38 DECEMBER 83

INDEX . PAGE

A PUBLICATION OF THE ASSOCIATION OF COMPUTER-CHIP EXPERIMETERS

Executive Corner z
Editors Cormner 3
Members Corner 4
9600 Baud serial I/0 for the 1802 6
Enhancements to Hannan's Text Editor 9
Cassette Tape Repairs 11
16 Byte Wide Hex Dump 15
Word Processor 11 17
A Simple Port Decoder 23
A Short Memory Test Program 24
Forth : Right 1802 Assembly Code 25
Symon Enhansements 26
Pepsi Bottle Top Contest 27
The 8 bit Output Scam Revealed 28
ACE Product Catalogue 29
Club Communique 41

IPSO FACTO is published by the ASSOCIATION OF COMPUTER-CHIP
EXPERIMENTERS (A.C.E.), a non-profit educational organization.
Information in IPSO FACTO is believed to be accurate and reliable.
However, no responsibility is assumed by IPSO FACTO or the ASSOCIATION
OF COMPUTER-CHIP EXPERIMENTERS for its use; nor for any infringements of
patents or other rights of third parties which may result from its use.

- -
1983~1984 EXECUTIVE OF THE ASSOCIATION OF COMPUTER CHIP EXPER IMENTERS

President: John Norris 416-239-8567 Vice~President: Tony Hill 416~876-4231

Treasurer: Ken Bevis 416-277-2495 Secretary: Fred Feaver §1H37-251b

Directors: Bernie Murphy - Fred Pluthero - John Norris - Mike Franklin

Newsletter:

Production Product

Manager: Mike Franklin 416-878-0740 Mailing: Ed Leslie 416-528-3222
(Publication)

Editors: Fred Feaver

Tony Hill Fred Feaver 416-637-2513

(Boards)

Publication: Dennis Mildon
John Hanson

Club Mailing Address: A.C.E.
c/o Mike Franklin
690 Laurier Avenue
Milton, Ontario
Canada

L9T 4RS5
416-878-0740 .

ARTICLE SUBMISSIONS:

The content of Ipso Facto is voluntarily submitted by Club Members. While ACE assumes
no responsibility for errors nor for infringement upon copyright, the Editors verify
article content as much as possible. ACE can always use articles, both hardware and
software, of any level or type, relating directly to the 1802 or to micro computer
components, peripherals, products, etc. Please specify the equipment or support
software upon which the article content applies. Articles which are typed are
preferred, and are usually printed first. Please send originals, not photocopy
material., We will return photocopies of original material if requested.

PUBLICATION POLICY:

The newsletter staff assume no responsibility for article errors nor for infringement
upon copyright. The content of all articles will be verified, as much as possible, and
limitations listed (i.e. Netronics Basic only, Quest Monitor required, require 16K at
C000-3FFF etc.). The newsletter will be published every other month, commencing in
October. Delays may be incurred as a result of loss of staff, postal disruptions, lack
of articles, etc. We apologize for such inconvenience — however, they are generally
caused by factors beyond the control of the Club.

MEMBERSHIP POLICY: .

A membership is contracted on the basis of a Club year — September through the following
August. Each member is entitled to, among other privileges of Membership, all six
issues of Ipso Facto published during the Club year.

EDITORS CORNER

In answer to the anxious callers who queried the issue number on
the last issue of Ipso Facto, it was in error. This is the second
issue of the 1983/4 club year, #38.

This issue also contains something I didn't want to print -

I have not received one article since September. The editor's
closet is bare! The next issue of Ipso Facto may have only a
front and rear cover, so, if YOU want to get more out of ACE
then put something into it.

Club boards are selling well again. It is a curious cycle, with
peaks that strip our supply. If you have ordered a front panel
orbackplane recently, they are on order at the manufacfurers,

so please be patient. The front panels are due within a week,
the backplan:s by the first week of January.

A new expanded version of CHIP 8 is on the way. With new commands,
including an ASCII character set and better access routines, the
old RCA games manuals can be put to use again.

Would members write in to me .to.express interest in the following
boards : a revised disk board, with 5%:and 8 inch drive capability.

an 80 x 24 video board, based upon memory mapping the 6845
a D to A and A to D board
a modem

Your response will dictate whether the club invests in these new
products.

Please feel free to write with other suggestions for boards.

MEMBERS CORNER

Carlos Qualls 1825 S. Ginger, Cornelius, Oregon 97113 USA
Projects I am currently working on and which I plan to

write an article on as soon as possible. If you have any
questions or would like to help then please write me.

1) Weather Station using an ELF to keep track of the time,
temperature, wind speed etc. in my area. I am thinking
about writing this in FORTH when I get it up and running.

2) RAM/ROM board using TMM6116 static ram chips which have the
same pinouts as the 2716 ROM chip. I am looking at either
a 16K or a 32K version.

3) Terminal Program with the capabilities of uploading and
downloading code from a mainframe at 1200BAUD. This one
is in the future as I will have to get a 1200BAUD modenm
and a second serial port on my ELF.

4) Small "C" V2 complier for the ELF. I have a copy of the Small
"C" complier version 2 that was in DR DOBBS on a UNIX system
1 have access to. I plan to change the code to generate 1802

assembly language rather than the current 8080 assembly language.
This will give me a "high level language" to write code for my

1802. DR DOBBS also has a UNIX-like 0S written in small C v2
which might work well on the ELF.

5) RAM board using Intel’s new 8K by 8 iRAM (integrated RAM).
This is a dynamic RAM with refresh built onto the chip. .

These chips will allow a 64K board using less than 15 chips
(8 memory chips and around 7 support chips).

QUESTIONS for the members.

Is there anyone out there who has access to USENET or ARPAnet
or any other UNIX based network? If so I would like to talk to
you over the network. My USENET address is omsvaxlclq.

Does anyone have FORTH up and running on a cassette based system?
Can the cassette be used to hold the blocks(screens) like the
disk does?

Does anyone have the address to Netronics Tiny Basic I/0 (terminal

version)? I would like to substitute my own I/0 routines to have
Tiny' Basic run act 1200 Baud on my system.

I would like the I/0 address also for the Netronics Assembler.
Text Editor and Disassembler? Again so I could substitute my
own I/0 routines to allow them to run at 1200 Baud on my system.

Netronics Tiny Basic I/0 jumps are located at 0106 for input and
0109 for output. Long jumps are required.

Netronics Text Editor keyboard input is located at 0B79, and output .
is located atOCB2.

Perhaps someone out there could help with the other addresses.

5

Would anyone like to help me on the Small "C" to 1802 conversion?
I will have it set up to generate I/0O on my system and am not
familiar enough with the ACE system to fix the I/O to correctly
generate code for the ACE standard, For that matter exactly what

is the ACE standard? I cannot remember it being talked about
in any of the recent articles,

In relation to the above, has any member converted a Netronics
ELF-II into an ACE standard machine? What are the-differences?
Is all I need an ACE to Netronics adapter board? How does the
ACE machine do its I/0? Through a UART?

Thanks in advance and keep up the great work.
Carlos Qualls 1825 S, Ginger, Cornelius, Oregon USA 97113

FOR _SALE:

Netronics Keyboard, video board and case assembled and working.
Only needs a power supply and monitor(or TV) to be up and running
again. Selling because I now own a terminal. MAKE OFFER.

Netronics 16K static RAM board assembled and working. Selling
because I am building a 64K memory board. MAKE OFFER.

Carlos Qualls 1825 South Ginger, Cornelius, Oregon USA 97113

Homebrew ELF, 39k Ram, monitor on Rom,ACE Buss, ACE VDU board,
power supply, 2 joy sticks, case. Cassettes of Chip 8 games,
Tiny Basic, Quest Basic v5.0. Complete documentation.

$175.00 .

R. Nunnamaker, 111 Fairholt RD.S., Hamilton, Ont., L8M 2T6 416-547-9867.

9608 BAUD SERIAL I/0 FOR 1802 4/21/83
G. JONES 7717 N. 46TH DR, GLENDALE, RZ 835301

The relentless up—grading process continues. As with most 1802 ‘

based home computers, my system started as a s%ngle board trainer, and
as technology and personal finances allowed, har&ware and softwate have
been added, until my system is now nudging the limits of its memory
capacity. A dot matrix printer, video monitor, full BRSIC, and an
editor/assembler are some of the major purchases I have made recently.

One of the first additions I made to my 4K Super Elf was a video
monitor and ASCII terminal. Suddenly, I had graduated from Elf-Graphics
block characters to a "real computer”! The 64x16 display generated by
the Netronics VID-1 took me from the realm of the "toy" computer into
the real world, and I began to realize the potential of my 1822 micro.

However, after acquiring an Okidata MLBZ2A printer last December, I
began to feel the need for an 80 column display. I could have added a
memory mapped video board, but when Netronics announced the Smartvid-82
terminal, I found I could upgrade my present ASCII terminal by just re-
placing the VID-1 board with the Smartvid—-8@ board.

At first I continued to use the 392 baud I/0 I had used with the
VID-1, but the higher baud rates beckoned. I tried the higher speed
switch settings with Super BASIC, which has a variable rate serial 1/0
written into it. The manual notes that "baud rates from less than 12@
to approximately 4802 baud are automatically set by the software." I
tried, but 24202 baud was the highest setting I could use. Super’s
baud rate timing counter decremented past zero, and I found myself bhack
in the 12-12® baud range.

Then I remembered an article by Laylor Burdick that I had seen in
the old Club 1802 riewsletter, in which he implemented a switchable baud '
rate selector in order to use a H-9 terminal at 9600 baud, and a TTY-33

at 110 baud. A little careful dismembering of his routine, and the ad-

L
e:

e
2000
RV
o000
R0
oY
200
oo
ooV
200
3300
3300
3300

3311

7
ditionn of a substitute for the Super BASIC startup, resulted in the fol-

lowing 1/0 routine which runs great on Quest’s Editor/Assembler as well.
I was assembling my Smartvid board about the time M. Smith's re-
view appeared in I.F. #32, but later I tried to simulate the problem he
reported, about the screen going dead, and couldn’t duplicate it. The
one thing that aggravates me about the Smartvid-80 is its problem with
the Lock Keyboard function. Sometimes my terminal will power up with
the keyboard locked, or sometimes it will detect an "escape *" sequerce
in the data stream and lock up. There’s no reset button, and the only
recourse is to power the terminal off, or to have the host system send
an Unlock Keyboard command (escape "). It’s really annoyirng after you’ve
Just loaded 16K of program from cassette, only to find the keyboard is
locked up, and you have to power down to reset it. Pessibly, 1 could

insert an Unlock Keyboard command in my boot-up header....someday.

e 6 9 9 55 8 8 P8 BB SS [W i [3 B B B BE BN BN BN BN BN BN BN BN)
I TSI TITITTINIIIIIIITISGSS

IRRRRR]

a8

e

senessenas
1999%9%9%9%

SERIAL 9688 BARUD I/0 ROUTINE
WITH QUEST SUPER ELF OUTPUT VIA "@" LINE
AND INPUT VIA SERIAL PORT ON EF2 FLAG LINE

SPECIAL INITIALIZATION INCLUDED FOR QUEST
SUPER BRSIC.

R A R AR R R R R R RRERRRRERE)

~E0 48 B9 M8 =g B A8 B8 A9 BE =8 9

ORG #3300

caz3ec iNIT: LBR S. INIT; BRANCH VECTOR TO INITIRLIZATION ROUTINE

3303 Ca3311 BREAK: LBR BREAKO; BRANCH VECTOR TO BRERAK ROUTINE
2306 CR341B OUTPUT:LBR 0OUT96; BRANCH VECTOR TO OUTPUT ROUTINE
3309 Co340@ INPUT: LBR IN9G6; BRANCH VECTOR TO INPUT ROUTINE
23ec 5
33ac R AR ERRRERRERRERERRER
- 33ec 5
23ec 3 SUPER BRSIC INITIALIZATION ROUTINE
33eC 3 .
23ac ; REPLACES ENTIRE SUPER BASIC I/0 INIT ROUTINE
33ecC WITH A SINGLE CLEAR SCREEN/FORM FEED COMMAND
33eC H
C R R R AR R R AR R R R R R AR R R R R R AR A AR AR R R R R R R R R ERRRRERERRRRRERR R
C 3
33aC F8acC S. INIT:LDI #@C; LORD A CLS COMMAND INTO
330E BF PHI RF; RF.1
330F 3006 BR OUTPUT; AND GO OQUTPUT IT

3311
3311
3311
3311
3311
3311
3311
3311
3311
3311
3311
3313
33135
3317
3318
3318
3318
3318
3318
3318
3318
3318
3318
3400
3400
3402
3404
3406
3407
3409
340A
340C
340E
340F
3410
3411
3412
3414
3415
3417
3418
3419
341RA
341B
341B
341B
341B
341B
341B
341B
341B
341C
341D
341E
3420
3421
3422

FCoo
3517
FFoo
DS

FCoo
3502
Fago
C4

3DeE

FC8o
3010
C4
C4
C4
C4
3317
Fé6
3006
C4
C4
C4
BF

9F
7B
C4
FFoe
76
C4
C4

0 W58 B W8 WS BN S 88 NS =8
-s
-e
-
e
-8
-8

9y
BRERKO:

BREXIT:

W
o,
S
=

IN96:
WTST:

NXBIT:

SPACE:
CONT:

DONE:

.
’
-
2
.
9
.
?
.
L]
.
L]
-
9

UT96:

NXBITO:

BREAK CHECK ROUTINE

CHECKS FOR ANY INPUT DURING THE OUTPUT
ROUTINES AND RETURNS WITH DF DET IF A

BREAK

ADI #

00;
B2 BREXITs
003

SMI #
RETN

ORG #3400
ADI #0203
B2 WTST;
LDI #80;
NOP;

BN2 SPACE};
SEX R2;
ADI #80;
BR CONT;
NOP;

NOP3;

NOP;

NOP

BDF DONE;
SHR3

BR NXBIT;

GHI
SEQ;
NOP 3
SMI #0Q;
SHRC;
NOP

NOP;

CONDITION EXISTS
R R R R R R R R R R R R R R R R RRRERRRERE]

CLEAR DF
CHECK EF2 FOR BREAK CONDITION
YES, BREAK EXISTS, SET DF

CLEARR DF

WAIT FOR A START BIT
SET 8TH BIT TO A ONE
NOP FOR TIMING

IF 1ST BIT IS A SPACE,
2 CYCLE NOP FOR TIMING
NOT A SPACE, SO SET HIGH ORDER BIT
AND BYPASS THE SPACE TIMING

TIMING FOR R

SPACE BIT

MORE TIMING

GO THERE

IF ORIG. 8TH BIT IS SHIFTED INTO DF, DONE
OTHERWISE, SHIFT RIGHT, END BIT INTO DF
AND GO BACK BOR ANDOTHER BIT

TIMING FOR

THE FINAL

(8TH) BIT

SAVE THE INPUT CHARACTER AND AND GO OUTPUT

T EEEEE RN
1997799783991

962@ BAUD OUTPUT ROUTINE

GET THE OUTPUT CHARRCTER
SEND A SPACE AS A START BIT
START BIT TIMING
SET DF

SHIFT DF INTO BIT 8, AND BIT @ INTO DF

MORE TIMING

9

3423 C4 NOP
3424 E2 SEX R2; NOPS FOR 4 MACHINE
3425 E2 SEX R2j CYCLES OF TIMING
6 3B2A BNF SP-0UT; IF DF ISN'T SET, SEND A SPACE
8 7R REQ; IF IT IS SET, SEND A MARK
3429 C8 LSKP; AND DON’T
342R+7B SP-0UT:SEQR; SEND A SPACE
342B C4 NOP 3 TIMING
342C 3231 BZ DUNOUT; DONE IF ORIG. DF BIT HAS SHIFTED OUT
342E F6 SHR; ELSE, SHIFT REMAINING BITS RIGHT
342F 3022 BR NXBITOj; AND GO BACK FOR ANOTHER BIT
3431 9F DUNOUT:GHI RF; NOW RESTORE THE ACCUMULATOR
3432 DS RETN; AND RETURN TO CALLING ROUTINE
3433

OBJECT ENDS AT:604A

1A%l

3300 C2330CCV3311CR341BCR3400F8OCBF30
3310 Q6FCBO3517FFB0DS

3400 FCOO3S02FB8OC43DOEERFC8B3010C4C4
3410 C4C43317F63006C4C4C4BFIF7BC4FFOO
2420 76C4C4C4ERE23B2A7AC87BC43231FE30
3430 229FDS

OBJECT ENDS AT:604R

ENHANCEMENTS TO HANNAN?S TEXT EDITOR

One of the firgt things a computer hacker wants to do when he gets a
new addition to his computer system is to use it. I was no exception, so
following the addition of my new Okidata printer to my Super El1f, I began
to look for ways to utilize the new addition. Before long, I had listings
of all my programs, and had experimented with the limited graphics of the
printer. However, you can run Just so many copies of a listing, and the
time required to do anything useful with printer graphics can soon make
that activity tedious, so I was intrigued when Fred Harnan’s Text Editor
appeared in Vol. 3, #2 of Questdata.

It wasn’t long before I had the program on line, and found it to be
quite useful to me. However, the program has several drawbacks which
keep it from being a real "word processor". It was designed as a "line
Editor", rot a text editor, so you have to retype the entire lire to cor-
rect a spelling mistake or change a word. Alseo, there is no way to add

or delete a line of text, which I found to seriously inhibit my use of the

program.

10

 Here are some simple additions to the Text Editor which add an "Insert”
and a "Delete" line command. They can--be typed intoc the program with no

other changes, and will make Mr. Hannan's simple_utility much more useful.

324 IF Ss="D" GOTO 170@
325 IF Ss="d" GATO 17020
328 IF Ss="1I" GOTO 1802@
329 IF Ss="i" GOTO 1800

1482 PRINT "DELETE LINE - = D"
1484 PRINT "INSERT LINE - = I"

170@ INPUT "DELETE WHICH LINE #"Q: IF Q=0 GOTO 210
1705 IF Q@)A1 PRINT "LINE # DOESN'T EXIST.": GOTO 170@
1720 PRINT "DELETE LINE #";Q

17322 INPUT "Y OP N"Q$: IF Qs="Y" GOTO 1750

1740 IF Qs="y" GOTO 1730

1741 IF Q$="N" GOTO 170@

1742 IF Q$="n" GOTO 1700

1745 GOSUB 1619@: GOTO 1700

175@ PRINT “LINE #"3;Q@: PRINT A$(Q)

1755 FOR I=Q TO (Al-1):A$(I)=A$(I+1): NEXT I

1757 PRINT "LINE DELETED"

176@ Al=Al1-1: GOTO 1700

1822 INPUT "“INSERT NEW LINE # AFTER WHICH LINE #"@: IF G=0 GOTO 212
1818 IF Q@)A1 PRINT "INVALID ENTRY": GOTO 1800

1820 Al=A1+1

1832 FOR I=A1 TO (Q+1) STEP -1

1840 A$(I)=A%$(I-1): NEXT I

1845 PRINT “INPUT NEW LINE"

185@ INPUT Q$:A$(Q+1)=0%: GOTO 1800

199@ END

11

CASSETTE TAPE REPAIRS
-by Dick Thornton 1403 Mormac Road, Richmond, Va, 23229

Cassette tape holders sometimes break. At times, the recorder ray
decide to eat a tape, ruining a section of it. A new tape may have
a very long leader so that data is lost when writing. You may have
a long, high quality tape, which could be better used as two reels,
each containing half of the tape.

Correcting the above problems is simple if the holder is put to-
gether with screws. If not, you need to get one that is screwed
together. Surplus houses sometimes offer these, and they can often
be found in variety stores at low cost. I recently bought a pack

of six cassettes for under $2. The tape was useless, but the holders
were screwed together,

If the cassette to be modified is in a glued or heat-welcded holder,
carefully split the holder with a knife, saw, or whatever is handy,
raking sure you don't damage the tape. Insicde, you will find two
small plastic reels on which the tape is wrapped. The ends of the
tape are held by snap-in pieces on the edge of the reels. Save the
tape and reels and discard the rest.

Cassette holders with screws usually have 5 or 6 screws, one at
each corner, one centered at the rear, and one centered near the
front. Sometimes one or more screws may bhe under the paper labhel,
Remove the screws, then gently separate the top and bottor of the
holder, holding it horizontally, so parts don't fall out. If it
wont separate easily, look for more screws. Study the arrangerent
of parts and how the tape is threaded. Draw a picture, if necess-
ary. Discard the tape and reels if only the holder is to bhe used.

To free the end of the tape from a reel, start with the tape wound
corpletely on the other reel. Press the small piece holding the
tape out of the reel, which frees the tape. After cutting out the
excess leader or bad section of tape, lay the reel on a table with
the end of the tape lying against the cutout in the reel. Push one
end of the holder piece into the cutout, capturing the tape, then
snap the other end into the reel, Trimr off the excess tape and you
are through with this end, If the other end is to be modified, put
the whole thing together and rewind the tape onto the other reel,
then repeat the ahove for the other reel,

If you want to divide a long tape into two shorter pieces (for ex-
ample, make two 30-minute cassettes from a 60-rinute cassette) use
your recorder to wind equal amounts of tape on each reel hefore
taking the holder apart. In this case, you will want to save the
reels from the cheap holder, as you will need two for each cass-
ette,

12

STRUCTURED FLOWCHARTS
by Bob Briggs

Pretend you're a new programmer and you've just bheen
asked to write a small program during a job interview.
What's the first thing you show-your potential employer when
you're ready with your program? A flowchart, right? This is
what some instructors will tell you, anyway.

Without getting into whether or not you should wuse

flowcharts (Why should you waste time on a flowchart ---
you've got it all in your head! But you need it for
documentation ... etc.) I'll describe one alternative to the

traditional technique of diamonds and boxes and connecting
lines that foster arkitrary transfers of control (i.e. GOTO's
and hard to follow code.)

Nassi-Shneiderman (N-S) charts support structured
programming concepts. After you have described your program
with N-S charts, writing structured code follows easily,
especially if you are using a structured language such as
Pascal or the C programming language. (Is FORTH a structured
language?). These charts were first publicized by Messrs.
Nassi and Shneiderman in their article "Flowchart Techniques
for Structured Programming," SIGPLAN notices of the ACM, v.
8 n. 8, ARug 1973. An article by C. Yoder and M. Schrag of
IBM in Proceedings, ACM SIGSOFT/SIGMETRICS Software and
Assurance Workshop, MNov 1278 (reprinted in "Tutorial on

Software Lesign Techniques", by Freeman and Wasserman, 1980,
IEEE Catalog No. EHO 1l€l1-¢g, available from IEEE Service
Center, 445 Hoes lane, Piscataway, NJ, @8854) further
describes and supports the use of these charts.
START
I The IF-THEN-ELSE
| . construct is repre-
/ \ sented using conven-
\ FALSE tional flow charts as
/ COND- \ shown at the left.
\ ITIioN [/ I
\ 2 / |
\ / |
I I
| TRUE I
I I
I "IF" I I "ELSE" I
| PROCESS | | PROCESS |
I I
| Cdmmmmmemme e '
I
I
END

The IF-THEN-ELSE construct is represented as follows
using N-S charts:

l I
| \ compiTION / |
I \ ? / |
e\ o |

" IF" IIELSEll

PROCESS PROCESS

In both of the above charts, if the CONDITION is TRUE,
the "IF" process is performed. If the condition is FALSE,
the "ELSE" process is performed.

Cimilar N=-S chart representations exist for other
constructs such as WHILE, and DO UNTIL.

Here is an example of using the N-S charts. The problem
is to read a keyboard to see if a key has been pressed, and
to report only one keypress each time the typist presses a
key. We will assume that the computer must continually query
the keyboard to check for a key, and further assume that the
computer does not have to handle the debounce problem =—--
i.e., the key only appears to go up and down once for each
keystroke by the typist. Since the typist holds the key down
for several queries by the computer (the computer is very
fast), the computer has to keep track of when the key is down
and when it is released.

To keep track of whether the computer has already

reported the key we will use a variable, called FLAG. If
FLAG is SET (TRUE), the key was already reported. If FLAG is
RESET (FALSE), the key has been released or it has been

pressed and the computer has not reported it yet.

Finally, if the ESCAPE key is pressed, the program will
print "GOODBYE" and exit.

14

Here is the N-S chart:

| \2?2 / | FLAG

- ———— — ——— — —— - >t

The "while(not ESC)" is my shorthand for "while the key
pressed is not the ESCAPE key, continue with the contents of

the while loop". The limit of the while loop is denoted by
the extent of the vertical bar to the left of the while
statement. In this example, it extends down to, but not
including the print statement. By definition of the "while"

statement, if "not ESC" is not true, (i.e. if the ESCAPE key
is pressed), then program execution continues starting past
the end of the while loop. This is the print statement in
this case.

The bYtody of the while loop contains two nested IF-THEN-
ELSE constructs. If a key is not down, then the variable
FLAG is reset (i.e. set to zero, or false, or not set). Then
we have.reached the lower limit of the "while" loop and so go
back to the top.

If a key is down, then FLAG is checked. If set, then
the key was down the last time it was checked. Since we dJo
not want to report it again, we do not do anything and go
back to the top of the loop and check the "not ESC" condition
again.

On the other hand, if a key is down and the flag is not
set, then we do report the key and set the flac before going

15

" back to the top of the while loop.

As this example shows, it is very easy to follow and
check the operation of the algorithm represented by the N-S
chart. Control starts at the top and drops through one of
several vertical channels depending on decision elements.
Large programs are handled by breaking the code into segments
small enough to fit onto one page.

I haven't drawn out the conventional flowchart for this
example, but I believe it would be harder to follow, and more
difficult to write structured code from. You're invited to
try it and compare.

The articles mentioned above have more extensive

examples of Nassi-Shneiderman charts. If their simplicity,
readability, and codeability interest you, check them out!

16 BYTE WIDE HEX DUMP

A useful utility for the computer hacker is a hexadecimal memory
dump program. In the back of the Quest Super BRSIC V5.2 manual is a
short hex dump by Ron Cenker. I tried using it, but found that the
eight bit format was awkward, probably because I'm used to the out-
put format that RCA used in their utility, UT4.
Here’s a short Hex Dump program written in Super BRSIC which will
dump memory in 16 byte chunks, a la UT4.
Gary Jones
7717 N. 46th Drive

Glendale, Arizona 853021

DUMP EXAMPLE - @98D2 - @98FF

98DA: 8281 DIFB QiF1 FFRE 410@ S9FS 247 4760
O8EQ: 80Q0B 9881 2707 0200 820D BYAR 3507 3Caa
O8F0: 0222 2222 2022 222Q AQDQD YACD AABT7 47ARA

S R
15
2@
25
32
35
40
45
=],
29
6Q
65
70
75
8a
85
90
95
122
125
110
115
1202
125
132
2o
205
212
215
200
305
319
422
425
410
415
420
423
430
435
449
445
45

16

EM 16 BYTE HEX DUMP

REM G.L. JONES - QUEST SUPER BARSIC V5.0
REM

DEFINT Z

DQTQ Ilwll’ ll1ll’ IIEH’ ll3ll’ “4", llSIl, "6“, ll7ll’ IlBll, llgli’ Ilnll’ IIBII’ |IC"’ IIDCI" HEII, IIF“
FOR I=@ TO 15: READ H$(I): NEXT I i
RESTORE -
INPUT "ENTER START ADDRESS (E@XXXX)"Sl1
INPUT “"ENTER END ADDRESS (BYYYY)"E1l
IF S1=E1 GOTO 45
CLS
GOSUB 402
S1=(S1/16) %16
FOR A=S1 TO E1 STEP 16
GOSUB 20@: REM CALCULATE ADDRESS IN HEX
PRINT H$ (A1) +H$ (A2) +H$ (A3) +H$(A4) 3": "3: REM PRINT ADDRESS
FOR W=2 TO 15 STEP 2
W1=PEEK (A+W) : W2=PEEK (A+ (W+1))
GOSUB 32@: REM CALCULATE 4 DATA DIGITS IN HEX
PRINT H$ (D1)+H$ (D2)+H$ (D3) +H$ (D4) 3" "3
NEXT W: REM INCR WORD COUNT BY TWO
PRINT : NEXT A: REM INCR ADDRESS COUNT BY 16
PRINT CHR$(3@): TOUT : INPUT "MORE"G$
IF MID$(Q%,1,1)="Y" GOTO 45
END
Al=(A/4296) :N1=A~ (A1%4296)
A2=N1/256:N2=N1~ (A2 *256)
A3=N2/16:A4=N2- (A3%16)
RETURN
Di=W1/16:D2=W1~(D1%16)
D3=W2/ 16:D4=W2~ (D3*16)
RETURN
INPUT "READY PRINTER"Q$
IF MID$(G%,1,1)="" GOTO 415
IF MID$(Q%,1,1)="Y" GOTO 420
TOUT : RETURN
INPUT "PRINT SIZE - (S)MALL OR (R)EGULAR"G$
IF MID$(Q%,1,1)="" GOTO 445
IF MID$(Q$,1,1)="R" GOTO 445
IF MID$(Q%,1,1)="S" GOTO 450
GOTO 420
POUT : PRINT CHR$(32): RETURN
POUT : PRINT CHR$(29): RETURN

17

'WORD PROCESSOR IT

INTRODUCTION

Having Jjust finished my printer interface, I read (and loaded)
with great enthusiasm the TEXT EDITOR in issue 24 of "Ipso Facto."
While it answered a great need, it lacked a“mpst important feature; a
way for the user to edit a line, either increasing or decreasing the
length without displaying the modification on final print out.

Having determined this need I started devouring all articles in
past publications on word processors, including an article on the
implementation of a word processor in North Star BASIC.1

After dissecting the 1listing it was apparent that a direct
conversion was impossible; at least more difficult than writing one
from scratch using the concepts presented. The following listing is
the result of that effort.

PROGRAM SPECIFICS

Before implementing this program it is necessary to define the
user area for the machine language programs, text storage area, and
edit line buffer. As seen in the listing the program is configured
for operation on a 36kword system. If this program is to be used with
a different sized system, use the following memory map of the 36kword
system in determing the user area.

MEMORY MAP

SUPERBASIC 0000-3TOF

iNPUT SUBROUTINE 3710-3737TH

MOVE BACK SUBROUTINE 3738-373FH

MOVE FORWARD SUBROUTINE 3740-375TH

REPLACE SUBROUTINE 3758-3762H

TEXT CHARACTER BUFFER 3770-65FFH

EDIT LINE BUFFER 6600-66FFH

WORD PROCESSOR PROGRAM 6700-7TBF8H

PROGRAM STACK AREA TBF9-TEAFH
You will note that the program and stack area require H bytes of
memory. It is suggested that to this you add an additional 512 bytes
(for safety reasons). All other memory should be defined as user

available (by using the DEFUS command).
Before loading the program, also modify the following lines:
a) line 50 - enter address of basic's input routine
b) 1line 100- enter address of basic's output routine
c¢) line 480- change arg3 to the length of text character
buffer
d) 1line 500- change last argument to end of text character
buffer address
e) 1line 560- change the 2E8F in arg3 to the length
. of the text character buffer
f) line 1840-change arg2 to the start location of the
edit line buffer

18

g) 1line 1860-change both constants to start location of
the edit line buffer

h) 1line 1870-change the 6600H to the start location of
the edit line buffer

J) 1line 1920-change arg3 to the start location of the
edit line buffer

Once all of the above changes are made to reflect the configuration of
your system, define the user area and start entering the program.

Perhaps a word 1is in order about the machine language programs
poked into memory at the start of the program. The first program
allows the user to type faster than the same routine in BASIC would
allow (this prevents those obnoxious program breaks). The next three
programs are used purely to speed up the edit speed. Prior to writing
these, a line edited at the start of a long text file would take about
5 minutes for the program to enter.

OPERATION

The word processor is fairly well prompting. The following
functions are performed:

1. INPUT - input text to the text buffer
. NEW - start text at buffer's start
. CONTINUE - allow the user to continue adding
text from the end of the file

2. PRINT - prints text to either the terminal or printer
. LINES NUMBERED? - if answered yes, the editor
will print all lines with numbers
= if answered no, the editor will
automatically justify the right
margin
3. EDIT - allow the user to modify text (on a line basis
by entering shorter, equal, or longer lines
4, SAVE - saves the text buffer on tape
5. LOAD = loads the text buffer from tape
6. BYE - exits the word processor

¥%¥NOTE: The """ are utilized to indicate line length (space
indication). It is important to start and end
the line the same as in the old listing so as
not to mess up words in the adjacent lines.
To force carriage returns or indicate the start of a
paragraph use the Kkey.

FUTURE MODIFICATION

The 1largest fault of this Word Processor is the lack of speed
with which it justifies and prints text (48 words/minute). I suggest
that someone (maybe me, if I get frustrated enough) write a machine
language subroutine to replace 1lines 830 through 1300. This would
greatly enhance the print speed.

19

A FINAL NOTE

I would be interested in hearing from anyone with comments/
modifications to this program and in addition will provide help in the
implementation of this program if required. If a response is
necessary please send a stamped, self-addressed envelope and allow for
my lack of spare time when waiting for responses. My address is:

Tom Nery

33 County St.

Foxboro, Massachusetts 02035
UsA

To give you an idea of the final results of the Word Processor
II, this article was printed by it. Good luck to all who wish to copy
it.

WORD PROCESSOR II

10 DEFINT Z

20 DIM Z(150)

30 REM INPUT SUBROUTINE

40 REM #***%* ADDRESS OF THE INPUT ROUTINE #¥¥**¥

50 DATA #D4,#33,#09

6O REM I8R5 83 53933 3903 J36 396303600 100 300000 20 000

70 DATA #FB,#08,#3A,#1A,#28,#30,#10,#9F,#FB, #0D

80 DATA #3A,4#27,#F8,#0A

90 REM #*#¥%% ADDRESS OF THE OUTPUT ROUTINE**¥¥x

100 DATA #DU,#33,#06

110 REM SR 5363 33 20330 6203000 01636 96 3696 36 9630 20003000 00 200 0600

120 DATA #F8,#20,#BF,#9F,#58,#18,#2A,#9A,#3A,#32

130 DATA #8A,#3A,#32,#D5,#9F,#FB,#04,#3A,#10,#D5

140 REM MOVE SUBROUTINE FOR NEW LINE < OLD LINE

150 DATA #48,#5A,#1A,#FB,#04,#3A,#38,#D5

160 REM MOVE SUBROUTINE FOR NEW LINE > OLD LINE

170 DATA #F8,#00,#AF, #BF ,#1F , #48 ,#1A,#1F, #FB, #04 , #3A
180 DATA #45,#08,#5A,#28,#2A,#2F ,#9F ,#3A,#4C, #8F

190 DATA #3A,#4C,#D5

200 REM SUBROUTINE TO REPLACE OLD LINE WITH NEW

210 DATA #0A,#FB,#0L,#32,#62,#UA, #58,#18,#30,#58 ,#D5
220 FOR I=0 TO 82

230 READ A

240 POKE(@3710+I,A)

250 NEXT I

260 REM ENTER START OF TEXT MEMORY

270 E30=83770

280 W=80

290 CLS ’

300 INPUT "INPUT, EDIT, PRINT, LOAD, SAVE, OR BYE"A$
310 IF MID$(A$,1,1)="I" GOTO 380

320 IF MID$(A$,1,1)="P" GOTO 580

330 IF MID$(A$,1,1)="E" GOTO 1540

340 IF MID$(A$,1,1)="L" GOSUB 2000: GOTO 290

350 IF MID$(A$,1,1)="S" GOSUB 1960: WAIT(100): GOTO 290
360 IF MID$(A$,1,1)="B" END

370 PRINT "PLEASE ANSWER I,E,P,L,S, OR B": GOTO 300

380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
530
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
730
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940

20

INPUT "IS THIS NEW OR CONTINUED INPUT™A$
IF MID$(A$,1,1)="N" GOTO 420
IF MID$(A$,1,1)="C" GOTO 500 ,
PRINT "PLEASE ANSWER N OR C": GOTO 380
CLS: PRINT "READY TO ACCEPT TEXT INPUT"
REM *#* THE FOLLOWING CALL IS TO THE MACHINE
REM **% [ANGUAGE SUBROUTINE. THE ARGUMENTS ARE:
REM %#*# ARG 1 - SUBROUTINE ADDRESS
REM *#¥ ARG 2 = TEXT STACK STARTING LOCATION
REM %*¥*#* ARG 3 - MAXIMUM TEXT LENGTH
CALL (€3710,E30,82E8F)
GOTO 290
FOR I=E30 TO @65FF
A=PEEK(I)
IF A=4 EXIT 550
NEXT I
PRINT "END OF TEXT NOT FOUND": GOTO 300
CLS: PRINT "READY TO ACCEPT TEXT INPUT CONTINUATION"
CALL (€3710,I,02E8F-I-E30-2)
GOTO 290
REM *#% THIS IS THE PRINT ROUTINE
CLS:C10=E30
INPUT "DO YOU WANT LINES NUMBERED"A$
IF MID$(A$,1,1)="Y" GOTO 760
IF MID$(A$,1,1)="N" GOTO 640
PRINT "PLEASE ANSWER Y OR N": GOTO 600
GOSUB 2040
PRINT : INPUT "HOW MANY LINES PER PAGE"P:P=P+1
PRINT : INPUT "WHAT IS STARTING LINE NUMBER"P1
PRINT : INPUT "PRINTER OR TERMINAL OUTPUT DEVICE"0$
0$=MID$(0$,1,1)
IF O$<OMP" IF O$<O"T" PRINT "PLEASE ANSWER P OR T": GOTO 670
L5=1: IF 0$="T" CLS: GOTO 830
PRINT : INPUT "SINGLE OR DOUBLE SPACED"S$
S$=MID$(S$,1,1)
IF S$O"3S" IF S$<O"D" PRINT "PLEASE ANSWER S OR D": GOTO 710
IF S$="D"L5=2
GOTO 830
PRINT : INPUT "LINE NUMBER RANGE (LOW,HIGH)"N8,N9
GOSUB 2040
PRINT : INPUT "PRINTER OR TERMINAL OUTPUT DEVICE"0$
0$=MID$(0$,1,1)
IF O$<O"P" IF O$<O"T" PRINT "PLEASE ANSWER P OR T": GOTO 780
L5=1
J9=0: GOTO 1310
IF P1=1 IF O$="P" POUT : PRINT : PRINT : PRINT : PRINT : PRINT :P1=P1+10
J=E30
=0
W=W+1
FOR I=J TO J+W
K=K+1
Z(K)=PEEK(I)
NEXT I
REM *%* SEARCH FOR NUMBER OF SPACES AND PARAGRAPH
REM *** DELIMITER (@) '
S=0:310=0
M=W

21

950 N=1

960 FOR I=1 TO M o
970 IF Z(I)XO#20 IF Z(I)<OH#40 THENS10 1
980 IF Z(I)=#20 IF S10=1 THENS=S+1:S1=I+1-N
990 IF Z(I)=#40 IF I<>1I=I-1: EXIT 1180
1000 IF Z(I)=#04 EXIT 1240

1010 IF I=1 IF Z(I)=#40 THENM=M+1:N=N+1
1020 NEXT I

1030 K=W=-S1:510=0

1040 IF Z(S1-1)=#20K=K+1

1050 FOR L=N TO 31

1060 IF Z(L)<>#20510=1

1070 PRINT CHR$(Z(L)),

1080 IF K<0 IF Z(L)=#20 IF S10=1 PRINT " ";:K=K=1
1090 NEXT L

1100 PRINT :J=J+L=1:K=0:P1=P1+L5

1110 IF L5=2 PRINT

1120 IF P1<P GOTO 870

1130 P1=11: IF O$="P" PRINT : PRINT : PRINT : PRINT :
1140 TOUT : CLS: INPUT "PRESS <CR> TO CONTINUE"A$: CLS
1150 IF 0$<O>"P" CLS: GOTO 870

1160 POUT : PRINT : PRINT : PRINT : PRINT : PRINT
1170 GOTO 870

1180 FOR L=N TO I

1190 IF Z(L)=#40 GOTO 1210

1200 PRINT CHR$(Z(L));

1210 NEXT L

1220 J=J+1

1230 GOTO 1100

1240 FOR J=N TO I

1250 IF Z(J)=#40 GOTO 1280

1260 IF z(J)=#04 GOTO 1280

1270 PRINT CHR$(Z(J));

1280 NEXT J

1290 PRINT

1300 TOUT :W=W-1: GOTO 290

1310 IF 0$="P" GOTO 1330

1320 GOTO 13“0

1330 POUT

1340 W=wW-8

1350 FOR I=N8 TO N9

1360 GOSUB 1480

1370 W10=W*(I-1)

1380 FOR J=W10 TO W10+W=1

1390 A=PEEK(J+E30): IF A=#04 EXIT 1420
1500 PRINT CHR$(A);

1410 NEXT J

1420 PRINT : IF L5=2 PRINT

1430 IF A=#04 EXIT 1450

1440 NEXT I .

1450 TOUT :W=W+8

1460 INPUT "PRESS <CR> TO CONTINUE"A$
1470 GOTO 290

1480 IF I<10J=3: GOTO 1520

1490 IF I<100Jd=2: GOTO 1520

1500 IF I<1000J=1: GOTO 1520

1510 J=0

1520 PRINT TAB(J);I;TAB(8);

1530 RETURN

1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060

22

CLS: PRINT "THE EDITOR IS BASED ON ";W-8;" CHARACTER LINES"

INPUT "DO YOU WISH TO CHANGE IT"A$

IF MID$(A$,1,1)="Y" GOTO 1590

IF MID$(A$,1,1)="N" GOTO 1610

PRINT "PLEASE ANSWER Y OR N": GOTO 1550
PRINT "REMEMBER, EDIT LINE LENGTH = LENGTH-8"
INPUT "ENTER LINE LENGTH"W: GOTO 1540

W=W-8 :

CLS: PRINT "ENTER LINE TO BE EDITED (0 TO EXIT)"
INPUT "LINE NUMBER"ES

IF E5=0W=W+3: GOTO 290

PRINT : PRINT

W10=W*(E5-1)

I=E5

GOSUB 1480

FOR J=W10 TO W10+W-1

A=PEEK(J+E30)

IF A=#04 EXIT 1740

PRINT CHR$(A);

NEXT J

PRINT : PRINT TAB(8);
FOR J=1 TO W

PRINT "*v;

NEXT J

PRINT : PRINT

INPUT "DO YOU WISH TO EDIT THIS LINE"A$
IF MID$(A$,1,1)="Y" GOTO 1820

GOTO 1620

PRINT "ENTER LINE (250 CHAR. MAX), CTRL-D TO END"
PRINT

CALL (@3710,86600,800FF)

CLS: PRINT "PLEASE WAIT FOR THE PROMPT"
FOR I=@6600 TO €6600+#FF

IF PEEK(I)=#04I=I-6600: EXIT 1890
NEXT I

IF I=W GOTO 1920

IF W GOTO 1940

CALL (@3738,W10+W+E30,W10+I+E30)

CALL (83753 ,W10+E30,€6600)

GOTO 1620

CALL (@3740,W10+W+E30,W10+I+E30)

GOTO 1920

REM SAVE TEXT SUBROUTINE

INPUT "POSITION TAPE AND PRESS <CR> TO START"A$
PSAVE C

RETURN

REM LOAD TEXT SUBROUTINE

INPUT "POSITION TAPE AND PRESS <CR> TO START"A$

PLOAD C

RETURN .

PRINT : PRINT "WHAT LINE LENGTH (CURRENTLY SET AT ";W;

INPUT ")"W
RETURN

23

B8/14/83

Association of Computer Experimenters ..
c/oc M.E. Franklin '

&8 Laurier Ave.

Milton. Ontarico

Canada L?T 4RSS

Okay, okay, so vou want articles for the newsletter. I have been
meaning to send this one for a while, so here it is.

When adding 1/0 ports to the 1882, extra circuitry must be added to
gate the various control signals, ie MRD, TPA, MWR to each port.

I have designed a way to gate these signals into the decoder so
that no additional gating is required. All 14 ports are encoded,
and all outputs are active low, which is what is needed in most
cases. All that is needed is one 74C154, one half of a 4913 D type
flip~flop, one inverter, and one two input NOR gate.

Note that the Y% and Y8 outputs are not used.
Richard M. Cox

2679 Calle Abedul
Thousand Oaks, Calif. 213&60

NO 23 A Y& lo— NC
22 YI — |
N/ B : V2 k— 2
Y3 o— 3 OUTFUT
N2 2lic Y2b— 4 FpRTs
S Y5 0— &5
MPRD "N Y
_L/ 201y \./67 2:67
+5 ————_I 74C/54
T e
. D o — v8 oy
TPB—{>O—.———-C Y3 o— |
Y/0Op— 2
4013 VIl o—3 INVBUT
R YiZo—4 pPprTS
/15 b— &
l /9 Yo i O :
TPA qs2 V)5 o— 7

SHORT MEMORY TEST PROGRAMNM

THIS MEMORY TEST PROGRAM IS RELOCATABLE & REQUIRES LESS THAN ONE PAGE
OF MEMORY, IT LOCATES THE TOP OF A CONTINUOUS BLOCK THEN PATTERNS EACH
PAGE, TESTS THE PAGE FOR ERRORS THEN SHIFTS THE PATTERN RIGHT ONE BYTE.
EACH BYTE IS TESTED 256 TIMES AND STOPS ON ERRORS, ANY KEY PRESS CONTINUES,
HERE IS A LIST OF MONITOR CALLS USED

D4 E0 07 XX OUTPUT INLINE BYTE

D4 EO OE OUTPUT 16 BITS OF RA AS HEX EXPRESSION

D4 EO 14 INFUT, WAIT FOR IT

D4 EO 11 OUTPUT AN ASCII STRING, TERMINATE WITH MSB SET
CO E0 00 LER TO MONITOR

F8 01 BE LOAD FIRST PAGE OF TEST BLOCK

IN MY SYSTEM, 20K TAKES 7.5 MINUTES WITH 3,58MHZ CLOCK.
BEWARE SYSTEMS WITH 464K CONTINUQUS RAM.

0000
0010
0020
0030
0040
0050
00460
0070
0080
0020
0040
00E0O
00Co
00DO0
00EO
00FO

LYNN KEENLISIDE
LONDON, ONT,

F8 01 BE ED F8 00 AE AD
SEF3 32 09 D4EO 11 0C
4D 45 4D 4F S2 59 A0 8D
11 20 549 4F A0 B8E AA PE
0D 0D 8D 8D AA 9D BA D4
AP 8D SZEZ289 SD 1D 19
F3 3A 5S4 F8 00 A? 8D S2
0D 45 S2 S2 4F S2 20 41
OED4 EO 14 1D 19 EZ 8D
3A 468 8D FC 01 AD 3A 4E
o2 E2EF3 3A 43 D4 EO
20 42 4C 4F 432 4 20 20
FA7F FES? 32 00 FE 17
00 00 00 00 00 00 00 OO
00 00 00 00 OO0 00 00 0O
00 00 00 00 00 00 OO0 OO

EE 2E FC 01 EE OE FE FF
54 45 53 549 49 4E 47 20
AA 2D EA D4 EO OE D4 EO
BAZ2AD4 EO OED4 EO 11
EO0O OED4EOD 07 OD FS 00
8D 3A 40 9D FF 01 ED 8D
ED8? F23284D4E0 11
>4 A0 20 EA 8D AA D4 EO
3A 8F 2D FF 01 ED 8D F3
D4 EO 07 OE 9D FC 01 ED
11 0D 5S4 4F S0 20 4F 456
4C 4F 4F S0 20 3F A0 &F
C2EO0 00 30EF 00 00 00
00 00 00 00 00 00 00 0O
00 00 00 00 00 00 00 0O
00 00 00 00 00 00 00 OO

Ko>=Xoo'ﬂolo}0{
As2.T*, TESTING
MEMORY 2TV T
o TO X 02T, T,
ITYTY R4 AN AIRTH
YR Jea it ee=,
51T) WRMes2, T,
+ERROR AT ¢ .xT?
Thevebetese=es
:holo':NT\ooolo=
Rbes:CT ., T0P OF
BLOCK LOOP ? o
20 LEN 0700,
PeRLIIII LI IIINSY
PresbesR b LIS

PEERF BB 00000

25.

FORTH : Right 1802 Assembly Code
By- David Horner 15 Sadlee Cove Cr Agihcourt Ont M1V 113

I am & newcomer to 1802. Actually, I’ve had the chip sitting on
my shelf for 3 yrs and recently undertook to build a computer
system for my son. 1 saw FORTH as an ideal vehicle to drive this
bare bones system. However, 1 was bothered by it’s interrupt
problems as my design uses interrupts heavily.

As mentioned by Tony Hill in the last newsletter +LOOP and LOOP
contain problem code. However, these are readily fixed in place.
The fix for the word “I” is a real challenge as the machine code
could not be contained in the space required necessitating
patching code in some “available space”. This would generate
non-standard variations of the club FORTH which 1 did not
consider acceptable. Therefore, 1 sought a solution that would
fit in the original space. What, as we all know, uses less
memory than assembler code? FORTH of course!

The word “I” gets the current value from the return stack and can
be defined as follows
¢ I >R DUP >R ; (10 bytes)
or more simply
t: IR ; (6 bytes)

Which indicates “I” is the same as R! The code for R is
identical to the code proposed for “I”. “I” can therefore be
implimented by changing “I”’s pointer to point to R. Changing
the pointer allows for a standard solution and is faster and
smaller than any patch. LOOP , +LOOP and “I” can be fixed as
follows

LOOP +LOOP 1
00EE 92 BS B7 0126 92 BS B7 1423 03 BF
82 AS A7 82 AS A7
18 17 18 17

Locations 1425 - 1430 are available for patching.

REVISED JULY 7, 1983

26
-BY ROBERT CARR» 4691 FREEMAN ROAD» MIDDLEPORTs NY 14105 USA

HOORAY?! A CLUB STANDARD MONITOR AT LAST. I OBTARINED A
LISTING OF "SYMON CSC" AT THE APRIL CLUB MEETING AMND SPENT
SEVERAL HOURS LOADING IT IN MY ELF II WITH NETRONICS VID.
THE FOLLOWING PATCHES WERE MADE TO “SYMON" TO ENHANCE 1TS
OPERATIGN WITH MY SYSTEM. :

FIRSTs I DO NOT HAYE A REAL TIME CLOCKs SO THE BYTES AT
CO3DH WERE CHANGED FROM D4 C7 8C TO C4 C4 C4. THIS KEEPS
JUNK FROM PRINTING ON THE SCREEN EVERYTIME THE MONITOR IS
ENTERED.

SECONDs SINCE I OFTEN HAD A SCREEN FULL OF GARBAGE WHEN
ENTERING THE MONITORs I WANTED TO DO A FF UPON “SYMON™
INITIALIZATION. CHRANGE CO036H-CO03CH FROM C4 C4 C4 D4 C1 C1
18 TO D4 C1 C1 18 D4 C1 78. THIS IS DONE AT THE COST OF 3
FREE BYTES IN THE INITIALIZATION CODEs BUT STILL LEARVYES 3
BYTES FREE TO JUMP TO ANY INITIALIZATION CODE REQUIRED BY
YOUR SYSTEM. THIS IS EASILY DONE USING THE SCRT BUILT INTO
“SYMON".

THIRDs SINCE MY VID DOES NOT HAYE A HANDSHAKE LINE, IT
IS NECESSARY TO DO A DELAY WHILE PERFORMING AR FF. IF THIS
DELAY IS NOT USED 2 OR 3 CHARACTERS WILL BE LOST AT THE
START OF THE DISPLAY. FIRSTs LOAD THE FOLLOWING CODE IN
FREE SPACE WITHIN THE MONITOR.

C414 D4 C1 86 QUTPUT FF

CR17? 0OC 00

C419 D4 Cl DD SRYE RE6 8-B
C41C F8 40 BB AB DELAY COUNT
C420 2B 9B

C422 3R 20 LOOP UNTIL DONE
C424 D4 C1 EE RESTORE REG 8-B
C425 DS

THEN CHANGE C178H-C17CH FROM D4 C1 86 OC 00 TO D4 C4 14 C4 C4.
FOURTHs WHEN I ENTERED AN ILLEGAL COMMANDs “SYMON®
CRASHED. CHANGE CO11H FROM 3R TO 42.
FIFTHs THE BAUD RATE IS SET AT 1200. THE "SYMON 3"
LISTING IN IF=30 INCLUDED THE FOLLOWING TARBLE.

BAUD 172 DUPLEX FULL
150 49 48
300 a3 24
600 13 12
1200 09 08

LOARD THE PROPER YALUE FOR YOUR SYSTEM IN C702H. I FOUND R
YALUE OF 26H WAS NEEDED FOR MY 300 BAUD NETRONICS VID TO
PROPERLY ECHO KEYBOARRD INPUT CHARACTERSs, BUT 25H WORKED FINE
FOR HRALF DUPLEX.

I AM CURRENTLY RUNNING "“SYMON" OUT OF RAM UNTIL I AM

" SATISFIED WITH THE WAY IT RUNS IN MY SYSTEM. I HAVE IN-

CLUDED ALL ADDRESSES OF CHANGED LOCATIONS AND THEIR
PREVIOUS CONTENTS BECAUSE I AM NOT SURE MY LISTING IS THE
SAME AS THE DISTRIBUTED LISTING.

AS FOR "SYMOMN"s I LOVE THE DISASSEMBLERs BUT MISS THE
REGISTER SAYE AND RESTORE OF “SYSMON". ALSO» THE I-0 NEEDS
WORKs BUT I WILL TAKE CARE OF THIS WHEN I COMPLETE THE CLUB
CPU BORRD WITH THE HARDWARE UART. THANK’S RGARIN MIKE.

27

QD REMee+PEPSI BOTTLE TOP CONTESTeee
0 CLS

30 PRINT TAB(20D 3 "PEPSI BOTTLE TOP GAME": PRINT @ PRINT

40 INPUT "DRATA FROM KEYBOARD OR TAPE"IS

S50 IF MIDSCISs1,2)="KE" 6GOTO 770 .

60 IF MIDSCIS»1,25<>"TAR" PRINT "CAN'T UNDERSTAND": WRIT(I0M: b

arag 20 -

70 CLS:s PRINT “PLACE DATA TAPE IN RECORDER"™: PRINT

30 INPUT "PUT RECORDER IN PLAY MODE AMD PRESS RETURN"IS

20 DLOARD Cs1s12 CLS

100 PRINT DO YOU WANT TO:": PRINT

110 PRINT TREBC(10) 3 "ENTER NEW DRTR"

120 PRINT TRBC(10>35"CHECK FOR WIMMNING NUMEBERS™

130 PRINT TRBC(10>35"LIST NMUMBERS"

140 PRINT TREBC1003"SAYE DATA ON THFE"

150 PRINT TREBC(10)>5"END PROGRAM™

150 INPUT “ENTER ONE OF THE REBOVE"IS

170 IF MIDSCISs1+30="ENT" GOTO 230

130 IF MIDE(I$»1.3>="CHE" 5OTO 460

130 IF MIDECI®»1,3>="L1E" GOTO S50

200 IF MIDSCI$»1+3>="SRY" 6OTO 730

210 IF MIDSC(I$s1+3»="END" CLS: END

220 PRINT “CAN‘T UNDERSTAND": WAIT(300x: CLS: o0OTO 100

230 CLS: PRINT "DO YOU WANT TO:": PRINT

240 PRINT TREBC10> s "ENTER A TOP MNUMBER"

SN PRINT TRB(10»3"ENTER R WINNING MUMBER"

60 PRINT TRAB(10»§"RETURN TO MEMNU"

270 INPUT "ENTER ONE OF THE RBOVE™IS

230 IF MIDSCIS»1s2x="TO" 5OTO 320

290 IF MIDSCISs1,20="WI" GOTO 390

300 IF MIDSCISs1.20="ME™ CLE: G5OTO 100

310 PRIMT "CAN‘T UNDERSTAND": WARIT(SOO»: CLS: o0OTO 230

320 CLS: PRINT "ENTER PEPSI BOTTLE TOP NUMBERS™

330 PRINT "TO END INPUT ENTER 0 <ZERO>": PRINT

240 FOR A=T1 TO 250

330 INPUT "TOP # = "TiM

380 IF TCA=0 LET T1=R: EXIT 330

370 NEXT R

280 5OTO 230

390 CLS: PRINT “ENTER PEPSI WINMIMNG MUMBERS™

400 PRINT "TO END INPUT ENTER 0 (ZERO>": PRINT

310 FOR BR=W1 7O 30

420 INPUT "WINMING # = "WC(B)
430 IF WcBx=0 LET Wi=B: EXIT 450
440 NEXT B

450 5OTO 230

460 CLS: PRINT “CHECK FOR WINNING COMEINATION": PRINT

470 PRINT "WAIT A MINUTE WHILE I CHECK": PRINT

480 FOR B=1 TO Wi-1

490 FOR A=1 TO Ti-1 ,

SO0 IF WeBY=TCAY PRIMT TRBC10Y 3“1 FOUND ONE “SWCB3 3 "+"5T cF
Qm NEXT A

€20 NEXT B

S22 IMPUT "EMD OF CHECK - FPREZS RETURN TO CDHTIHUE"I$

=40 CLze: 07O 1040

550
560
570
580
590
600
610
620
630
640
6350
660
ére
680
690
700
r10
7ac
730
13
740
73S0
750
e
780
790
300

-~~~

CLS: PRINT “LIST NUMBERS IN MEMORY": PRINT
PRINT “BOTTLE TOP NUMBERS: *

LET C=0

FOR R=1 TO T1-1

PRINT TABC106C) 5T CAY 3 :C=Ca1

IF C>4 LET C=0: PRINT * -

NEXT A

PRINT

INPUT “PRESS RETURN TO CONTINUE"IS:
PRINT “WINNING NUMBERS:": PRINT €Ls
LET C=0

FOR A=1 TO wi-1

PRINT TAB(104C) W CR) 5 2C=Cri

IF C>4 LET C=0: PRINT * *

NEXT A

PRINT

INPUT “PRESS RETURN TO C “18:
Ineut - ONTINUE"18: CLS

CLS: INPUT “"PLACE RECORDER IMN RECORD MODE AND PRESS RETURN®

DSRYE C»r1s2

PRINT “DATA SAVED ON TRPE": WAIT :
5070 100 IT<300>: CLS
LET Ti=1: LET wi=t

DIM T @S0 >W 3D

6070 100

EMD

THE 8 BIT OUTPUT SCAM REVEALED

As we all know, the 1802 has seven (not including memory mapped
I70), 8 bit output ports, right? WRONG!!! The 1802 does in fact have
seven output ports but, (its not your fault RCA has mislead us in all
their 1literature) each output port can have up to 16 bits. This
effectively doubles its output capability. Before going any further,
let's look at how the 1802 does an output.

Once an output instruction is recieved (as we instructed it) it
sets its mrd 1line low, puts the high byte address of the X register
onto the address bus, strobes TPA, puts the low byte address of the X
register onto the address bus, and then on the next clock cycle reads
(once again, READS) that memory address. At the same time that the
mrd line goes low, the N-lines go to their given state as determined
by the second nibble of the output instruction. They stay in this
state as long as the mrd line stay low.

You have probably figured out how to implement the 16 bit outputs
after the last paragraph. By using the circuit shown in figure 1, we
can use the mrd, TPA and the decoded N-line as the strobe to a pair of
4-bit 1latches for the high order byte and then use the same circuit
except replace TPA with TPB for the low order byte.

To use this new output port, all that is required is to load the
two bytes to be ocutput into a register, set it to the X register and
then perform the appropriate output instruction (the one which selects
that port).

This gircuit can be a great benefit in a small dedicated
controller where the logic required for memory mapped 1I/0 is a large
part of the circuit. Let me assure you that the circuit does work as

I have implemented it in various forms for some simple control

- applications.

Tom Nery, 33 County St., Foxboro, Massachusetts,USA,02035

29 .

ACE CPU Board
‘ Size: 6" x 9.5"

Function: to provide a system micro computer (1802 -04 -05 -06)

- control logic, power on reset, fully decoded
INTERUPT, DMAIN and DMAOUT.
- seélectable BOOT to any PAGE ADDRESS
- 4 JEDEC EPROM/RAM sockets, with DUAL ADDRESS
decoding for 2 locations or sizes of memory.
- INPORT and OUTPORT
- UART with selectable baud rate
- RS 232 C with 2 Db 25 connectors
- extensive prototype area (1.5" x 8.5")
CPU Board is designed to be a system or standalone micro
controller board.

Power: +5 v. Gnd. tlZv for RS 232C circuit.

Documemtation: assembly and test instructions, software for UART.

PROTO TYPE AREA

2~4Meg (X 22k 9X 22k 3X22k 10ut

~ 4 "6 z 7 # 8
g 1%3 1 1 g 0 9
5 J

—
—
(=X ol
~Nor~
WAV
==
1
1

s oo B!
eI 100k~w..5uuf TC24k S o |
1 CZJS 1 ; Xz?k o
S I S £ JT.Y', ST S 8| Hoxak g
0 2 1 p) 3 5 2 i
9X22 X : : 2 .
cPy 1
7 o
’ g (- i
S q 9119
< S :

pB25 B

} -
22 10—:’”

1
8
5.0698 5
Meg| >

6 ouTt

1302/5 CPU Bd_82- AMEF]
<> 8Y mSSCAP

. ACE CPU BOARD

PARTS PLACEMENT

n
>
~
~
x
-*
m
11°8%
—
S
o
ﬁo
E
m
~%
N e~

‘|3

30 '

‘5
SW1 27 ax22k SW2
8k SE EPSEL
1
5 12 ;oo S 2lo? o
G [l T B $H
= 13 10918 3] i %%, S
1 m Lo f %100 ~od
16 10 slo |od 3 W.O ol
139 1 3 ry i S ‘o
’ ‘ 7}o__ o 1o, 0
4 -II|IlIIIILWldTImm|IL i
mg: >_~H 0—5 _
] =
AN
e om_ﬂz;.ss
—11) 8 1 obs /
m 2 4
17 10
TPA .
¢S
[7
A7 2320928 A
¥
1
19 1
59 ; "
1 20 !

ACE CPU BOARD

!
MEMORY DECODING-----

|

MEF 82.10

o 8DIP SWi
!

o 9X22k

o

16

)

o

4

o

12

e

ACE CPU BOARD

CPU and CONTROL CIRCUITS

PP

00 i

"B0OOT

A REl

2 131}

1

]

3

oy &

25

13 a

+5

22k
22k

N 20pt10M 1-5M

IN
DM&
BMA

our

MEF 82.10

.

15471819

ACE CPU BOARD PARTS LIST

CPU Control & Boot

Ic #

1 4013
2 4013
3 4011
4 4093
5 4556
6 4077

7 1802/4/5/6

12 74C244
13 4073
14 4073
15 4073
Resistors

2 - 9 x 22K SIP or 18~22K 1/4 watt

10

22K 1/4 watt 5%

—
1

100K 1/4 watt

1 - 10 MEG 1/4 watt

Capacitors
1 - 2.2 mf tantalum

2

20 p.f. ceramic

}

3 - 10 mf tantalum (buss filters)

6

}

0.001 mf ceramic (bypass caps.)

Diode

1 - IN914

Crystal
1 - 1.0 meg to 5.0 meg
Switch

1 ~ 8 position dip

Memory
IC &
8 4042
9 4042
10 4556
11 4556
17 EPROM/RAM
18 -
19 "
20 .
Resistors

2 22K 1/4 watt 5%
Switch
2 8 position dip

Port, UART, RS232C

IC ¢
16 1853
21 1854

22 SMC-COM 8116 (P)

23 1852
24 1852
25 1488
26 1489
Resistors

4 22K 1/4 watt 5%

1 9 x 22K SIP or 9-22K 1/4 watt

Diodes

7 - IN 914
Crystal

1 5.0688 meg.
Connectors

2 Db25 Female
(wire solder type)

e
RY
>
2 3
st O
=) = -0
- —p c
: —t
=) o Q 1’(3[
P < o
D[D
l“,\' A = 0 o N ,
- .
& Sl —w]) a':'.g o O
- S o ‘_,_:'w-o Joo
4 . ol - Z2
P= — w W w N
- o 35M5‘m~—ow~n§ w ow
s &~
-
DY D : :
= o w
Py X - ‘ o
°
1]
—— °
e 2GRLS & o)
Db e — - e d
0% e Z g -
“ 6T 3w o, .
< 0 . ot
g o | ~ N._A_
> = =3 -
o
g
wRUGNBeE B J, %
- —z c °]
- — ?b, x
3 = 3*
*
m_JN o
- N
-
5 %
(] a0
b)
8 8 a
. 23
(=] 3 2
n w wny
2 >
8
& LLbddbe bl
N SV S AT
(73] PR .0
g B <
p=3
3

32

ACE FRONT PANEL

Size: 6" x 13.5" ‘

Function: to provide- a 2716-32-64 Eprom burner (write only)
= micro control switching for RESET/RUN, DMAIN
LOAD, MEMORY PROTECT
Port 4 HEX PAD input -
REAL TIME CLOCK (Nat. 58167AN)
up front ACE EDGE CONNECTOR
4 digit ADDRESS display
2 digit DATA display (port 4)
- SINGLE STEP
- PROTOTYPE AREA

Power: +5v, Gnd, +25 to 28v DC for EPROM BURNER

Documentation: Assembly and test instructions, operating guide.
Software for EPROM BURNER and REAL TIME CLOCK.

blblbblbh g =

© @ B =
‘HEEE O . @ é
B,,'.’]r T TS T o] MEX PAD O=~F e.m“ g

®
®

°
.O

(2510 [0[]

KLUGE AREA
: 0 © o]
e
[ion_J0fi0n 100]

B
S esteg
9@@
‘.-

coele l o.ce.
Lz ‘A| s,m Cre)le %

g .u, "% oo

L)
o

S8I6TAN

EDGE_CONNECTOR
5S CONNECT!
BUSS CONNEL TOR
o
o
Pt

@0 1852 5@!&.
® ©

P
[wso 10 w0 T[eow 10

SANE

2722

2

3V PASS CAP

33

. T . s Pace’id & 91"
‘e—t’]"::T': s7 3):,' L3°€$ gun
® [k SR
\ ! ¢ o TEAR I,’ [
s L b 1 ‘MP” L [
[+ — »
5°1L > .Ss WR Ou
O'(] 3 ‘11\ . -l- é DS Sz@hl L"
Ot s“‘l—ﬂ——DMAlN s M G——-t- 0 !
1
+5 2 R2 'y
" C 5 —- —_
ol ;“ .’7' 07 1 l‘;
L 4] vl 7 o 8 'n‘t
p ¢ S 7 3
. "2 n 5 5 ¢
'; = s TR - D0 3 2 4
o
¥ A*-ud 5
b =0 L] "
r 5 1L 36 3w
33:-3 bl c1
o ko, 8 i AN
— 2 2% sop 1O
1 Jfa X
: J2
L Ccaik REFCA Pt :'ECZ

HEX PAD and CONTROL

ACE FRONT PANEL

RIe22
W2 ¢ ag 0
12
SR s D13 | LoAD 4 & 1
RESET 5 32— WAT
PAUSE 63 CTR
RUN 7 09
FETCH {ampfyn2 15N
9f exec. 1R <
DMA 0 13 —SC
INT. 49
%12 311
617 *
<} TPB
R23 - 66 "
07
Jo i L
3 2 |Eq__9__05
8 DATA | 5, 07 b 04
=g
1 HP [y 9 ~D3
] lﬂ-——-<]2—-oz
B 6 f< }—l——-o
m 8 S 1
—<]——so

PL/LOAD s
*

P
=
sl
&)
—O‘O
mlg
(w]
~ =
% “
i&:z

SINGLE STEP " 3 <}_,_—:23
TROL DATA T
ADDRESS —AQ

DISPLAY :

P I
r—< T0 N!ADD
} _._.JH

93bes

- 1

EPROM PROGRAMMER

'd >
W VoY

»» P
~@ o

.5
9 10
40N R0
1 2% il
: 1N 1 5 12] & i
-———-[}1 3 8 2p—p70
ST L =
7 —
A —
N
4

o-W—0
J o0 Nt
EU
138
1

iy
b ibo
L[b 1008 ey
¢ 1018 ‘C'@
L P e
1 12 1STo
L 14195
12 , w027|2
s R
-

» = *S
REAL TIME CLOCK II

ACE BACKPLANE

Sixe: 7.0" x
Function: to
with address,
: to
to
to
to
to
to
Power: -5v,
Documentation:
NOTE:

34
AND 1/0 BOARD.
13.5"

provide
MRD mad
provide
provide
provide
provide
provide
provide

a 14 siot 44 pin motherboard, configured in the ACE standard,
MWR, TPA and TPB buffered.

Netronics compatible CASSETTE 1/0.

TTL and/or RS 232C SERIAL 1/0.

PARALLEL I/0.

a CPU CLOCK

a MEMORY MAP (I4 SEL)

a buss power filter and distribution point.

-12v., Gnd.

assembly and option guide.

ACE I/0 Adapter Adapter Board is available for owners of previous Backplane

(with cassette relay controller) which provides the above I/0 features as an add-on

upgrade to the board.
and connects to the buss by wire jumpers.

The Adapter is identical to the above board 1/0 section,
The board mounts on the top of the origional

RCE _}M;lq-z‘/p Deavd verl. 1MgL ~01 wmef

backplane by stand offs and bolts. Size: 3.0" x 13.5".
IR ——— = w
LI an APV 9 © — Sas MCo S o weef
S A ‘e o ETETETD a::z:z::((((((A 3oy e
pe s SN M St 1 A oy gl
et MRS T e B e i =l e R =T
|- e ' | e O =L,
R, e ’ (era ety = “4oes
——— u% e <) igsa i~ oot Ll Poer out L. [763] 1 b-ruu?ﬂ (
o r'nso l F doay z“~ P \ TorT T | T T ™
B
YRR il 3
N o X
RN @
e 4 |
\ o=
=3] J
L X N P P A R O P P

A

n] 3] Il L 1 . r
853 12 | |y D01 234567} |[p0T23L56 p0 1 2 34 56 TCK|
PORT IN PORT out 10 UPPER ADDRESS
0 g 56 75 D0O123L567S LATCH
1 |]

SR il

383°88%12
fpravssar}

3.579545 Meg.

e

T3 e *5

‘MEMORY MAP

Q-AMP and CASSETTE CLOCK PARALLEL and SERIAL CIRCUIT 'FF

ACE BACKPLANE and 1/0 BOARD ver2

GE

36

ACE 64k DYNAMIC RAM MEMORY BOARD.

Size: 6.0" x 9.5" .

Function: to provide up to 64K of user RAM on the ACE'configured buss. On board ‘
refresh independant of micro clock. RAM may be disabled in 4k blocks by sue of

switches (S 1 and 2). May be populated in units of 16k. Flexible jumper provision

at edge connector allows reconfiguration to other 44 pin configurations, ie VIP'

RCA Micro board.)

Power: -5v, -12v, Gnd.

Documentation: assembly instructions, trouble shooting guide, memory test program,
operation instructions.

Cost of complete board (64k) - approximately $125.00.

ACE 64k DYNAMIC BOARD 2x10,
Cap

16k Block

1
u? U 3 us -u'; v >
2l e 2 N]
S 3 IREIREF 0-3-
. =4 ~ 3 M
8] L L U
us «017] U7 4049 ~ 77 By gass Caps
.. T =7
3 Sl i= S| S sxoot,
- 9 = o 2l —~ - '
2 & I
~ o 8-B
45% ~ 5
Tz I S I U O O O I
a s Ui <= 8 oon
JRE © C—F
2 =
2 g 18] 1) LB] L UL

1Qucap

0l

8x 0.01,

37

3
16)

159~

4ouq

12
!
DIP
. o 3 a 4514 SwW
uas [T]]
Hoi3 &
10 uis
- DIP
Sw-
D uls
UET Y]
l!Ol.S sl2
4 —
+ N
7, - . .
o *a ALt -
u3
aois 373
us
10|
AL

v v

CuunvZIRr

38
ACE 2716/32/64k EPROM BOARD.
Size: 6.0" x 9.5"
Fuhétion: to provide 8 - 28 pin sockets optionally configurable to accommodate ‘
2 -4 -8 k EPROM or RAM chips. Decoding allows for location of memory at any location
in memory. Two decoders allow mixing of any 2 sizes of memory. On board MEMORY
MAP shadow .
Power: -5v, Gnd.

Documentation: assembly and operation instructions.

ACE 2716-32-64 EPROM BOARD (3

AlS :
E2\
1 ii 74C15¢ E'D.A- 7C154
,12 Et BR' E2 {,
Al A

~

1p 0 7 0 7 0
Lt ofwlen 2 p UFiPIER ‘l

aAmyén-n P SELECT

.{\

S
- ,' v LAl
- < w — P N"‘T R
Tl Pl FET 1 Py B Po17®
0.‘\ l'
a 2 ;
= e \J gt L] S s

ABEYB, DE2.
LT fiblkki
74C15% T4C15L
LOWER JZK 27165 UPPER JZK 2716s
W I e |
—Q ogy
§ 9--———0 ©
26 op———3 3
HHEESE |
i W
CE7(r .
' (o2
-_] G—*
O ~
| [o ’,\:x-
— 4 "
TE0 o -0
o -
MWR——o———
Al —O—
’ O Hy
050 e
MR = ATL /32" |45 .‘L EPROM BOARD
— N v A 6‘ =1
= =1y [T
—D— AL \Los/M}/ﬁTWR *l_
A0 L A3 t MRD
A2 \-mo
Al CE
D7 — A 04 D7
D 01 t D6
D 14 Ds
DO D 24 D4
¢ GND 1 D3
s
R2—9
22K Bz‘zx 5k BOARD SET UP FOR
oseL— @

2K CHIPS (wR RAM)

40

ACE DISK CONTROLLER BOARD
Size - 6.0" x 10.0"

Function - DMA oriented 8" Disk controller for the 1802.
Singe sided, single density WD 1771 Controller chip.
Designed to support two 8® Disks, jumperable Disk
Interface will accommodate any 8" Disk. Probably
could be modified to support 5.25" Disks.
ELF 11 users require DMA Adapter board for buss interface.

Documentation - assembly instructions, mini DOS, DOS exerciser
program.

Power - + 5 v., + 12v., Gnd.

=S
2

=
a

ol

8
g
N\

g

& 0 &2 <> 2
s —__
0 ™ s
a2 — -
& e =
00000000 -
1
me » _—
rR13
. = S
| u13 4 cla
CIRS
T) (o
(= 0= (e 0 s

CLUB COMMUNIQUE Rev. 83.07.01

NAME: DATE:
PRODUCT ORDER QUANTITY UNIT PRICE TOTAL
CPU Board . $40.00
Backplane and 1/0 Board, Ver. 2 40,00
Front Panel (with EPROM Burmer, Clock)’ 35.00
VDU Board, Ver. 2 40,00
64K Dynamic (4116) Board 50.00
Netronics = Ace Adapter Board 25.00
I/0 Adapter for Backplane, Ver. 1 20.00
Software
Fig FORTH - Netronics Cassette $10,00
format (6K) OO00H
Tiny Pilot - Netronics Cassette $10.00
format (2K) O00O00H
SYMON - Netronics Cassette $10.00

format (2K) COOOH

Back Issues

"Defacto” Year 1 - 3 (Edited) $20.00
Year 4 Reprint 10.00
Year 5 Reprint 10.00
Year 6 Reprint : 10.00

Membership — Year 7

Current Year - Sept. '83 - Aug. '84
includes 6 issues of Ipso Facto

Canadian $20.00 Cdn.
American 20.00 U.S.
Overseas 25.00 U.S.

PRICE NOTE

Prices listed are in local funds. Americans and Overseas pay in U.S.
Funds, Canadians in Canadian Funds. Overseas orders: for all items add
$10.00 for ailr mail postage. Please use money orders or bank draft for
prompt shipment. Personal cheques require up to six weeks for bank
clearance prior to shipping orders.

SALE POLICY

We guarantee that all our products work in an A.C.E. configuration
microcomputer. We will endeavour to assist in custom applications, but
assume no liability for such use. Orders will be shipped as promptly as
payment is guaranteed.

NAME :

MAILING ADDRESS:

PHONE NO.:

Note: Ensure mailing address is corréﬁt, complete and printed.
Please ensure payment is enclosed.

ASSOCIATION OF COMPUTER-CHIP EXPERIMENTERS
¢/o M.E. FRANKLIN
690 LAURIER AVENUE,
MILTON, ONTARIO
LIT 4RS

