




3

EDITORS CORNER

In answer to the anxious callers who queried the issue number on
the last issue of Ipso Facto, it was in error. This is the second
issue of the 1983/4 club year, #38.

This issue also contains something I didn't want to print -

BLATANT FILLER!! ! ! !

I have not received one article since September. The editor's
closet is bare! The next issue of Ipso Facto may have only a
front and rear cover, so, if YOU want to get more out of ACE
then put something into it. ---

Club boards are selling well again. It is a curious cycle, with
peaks that strip our supply. If you have ordered a front panel
orbackplane recently, they are on order at the manufacfurers,
so please be patient. The front panels are due within a week,
the backplanl~s by the first week of January.

A new expanded version of CHIP 8 is on the way. With new commands,
including an ASCII character set and better access routines, the
old RCA games manuals can be put to use again.

Would members write in to ~e:tolexpress interest in the following
boards: a revised disk board, with 5~:and 8 inch drive capability.

an 80 x 24 video board, based upon memory mapping the 6845

a D to A and A to D board

a modem

Your response will dictate whether the club invests in these new
products.

Please feel free to write with other suggestions for boards.



4
MEMBERS CORNER

Carlos Qualls 1825 S. Ginger, Cornelius, Oregon l7113 USA
Projects I am currently working on and which I plan to
write an article on as soon as possible. If you have any
questions or would like to help then please write me.

1) Weather Station using an ELF to keep track of the time,
temperature, wind speed' etc. in my area. I am thinking
about writing this in FORTH when I get it up and running.

2) RAM/ROM board using TMM6116 static ram chips which have the
same pinouts as the 2716 ROM chip. I am looking at either
a 16K or a 32K version.

3) Terminal Program with the capabilities of uploading and
downloading code from a mainframe at 1200BAUD. This one
1s 1n the future as I will have to get a 1200BAUD modem
and a second serial port on my ELF.

4) Small "c " V2 complier for the ELF. I have a copy of the Small
"c" complier version 2 that was in DR DOBBS on a U~IX system
I have access to. I plan to change the code to generate 1802
assembly language rather than the current 8080 assembly language.
This will give me a "high level language" to write code for my
1802. DR DOBBS also has a U~IX-llke OS written in small C v2
which might work well on the ELF.

5) RAM board using Intel's new 8K by 8 iRAM (integrated RAM).
This is a dynamic RAM with refresh built onto the chip.
These chips will allow a 64K board using less than 15 chips
( 8 memory chips and around 7 support chips).

QUESTIO~S for the members.

Is there anyone out there who has access to USE~ET or ARPAnet
or any other U~IX based network? If so I would like to talk to
you over the network. My USE~ET address is omsvax!clq.

Does anyone have FORTH up and running on a cassette based system?
Can the cassette be used to hold the blocks(screens) like the
disk does?

Does anyone have the address to ~etronics Tiny Basic I/O (terminal
version)? I would like to substitute my own I/O routines to have
Tiny' Basic run at 1200 Baud on my system.

I would like the I/O address also for the ~etronics Assembler.
Text Editor and Disassembler? Again so I could substitute my
own I/O routines to allow them to run at 1200 Baud on my system.

Netronics Tiny Basic lie jUmps are located at 0106 for input and
0109 for output. Long jumps are required.

Netronics Text Editor keyboard input is located at OB79, and output
is located atOCB2.

Perhaps someone out there could help with the other addresses.

•



5

Would anyone like to help me on the Small "C" to 1802 conversion?
I will have it set up to generate I/O on my system and am not
familiar e~ough with the ACE system to fix the I/O to corre~tly
generate code for the ACE standard. For that matter exactly what
is the ACE standard? I cannot remember it being talked about
in any of the recent articles.

In relation to the above, has any me~ber converted a Netronics
ELF-II into an ACE standard machine? What are the-differences?
Is all I need an ACE to Netronics adapter board? Row does the
ACE machine do its I/O? Through a UART?

Thanks in advance and keep up the great work.
Carlos Qualls 1825 S. Ginger, Cornelius, Oregon USA 97113

FOR SALE:

~etronics Keyboard, video board and case assembled and working.
Only needs a power supply and monitor(or TV) to be up and running
again. Selling because I now' own a terminal. UAKE OFFER.

~etronics 16K static RAM board assembled and working. Selling
because I am building a 64K memory board. MAKE OFFER.

Carlos Qualls 1825 South Ginger, Cornelius, Oregon USA 97113

Homebrew ELF, 39k Ram, monitor on Rom,ACE Buss, ACE VDU board,
power supply, 2 joy sticks, case. Cassettes of· Chip 8 games,
Tiny Basic, Quest Basic v5.0. Complete documentation.
$175.00 .
R. Nunnamaker, 111 Fairholt RO.S., Hamilton, Ont., L8M 2T6 416-547-9867.



6

9600 BAUD SERIAL I/O FOR 1802 4/21/83
G. JONES 7717 N. 46TH DR, GLENDALE, AZ 8~301

The relentless up-grading process continues. As wlth most 180c 4It
based home computers, my system started as a single board trainer, and

as technology and personal finances allowed, hardware and softwate have

been added, until my system is now nudging the limits of its memory

capacity. A dot matrix printer, video monitor, full BASIC, and an

editor/assembler are some of the maJor purchases I have made recently.

One of the first additions I made to my 4K Super Elf was a video

monitor and ASCII terminal. Suddenly, I had graduated from Elf-Graphics

block characters to a "real computer"! The 64x16 display genel'''ated by

the Netronics VID-1 took me from the realm of the "t l::lY" computer irlto

the real world, and I began to realize the potential of my 1802 micro.

However, after acquiring an Okidata ML82A printer last December, I

began to feel the need for an 80 column display. I could have added a

memory mapped video board, but when Netronics announced the Smartvid-80

terminal, I found I could upgrade my present ASCII terminal by Just re-

placing the VID-1 board with the Smartvid-80 board.

At first I continued to use the 300 baud I/O I had used with the

VID-1, but the higher baUd rates beckoned. I tried the higher speed

switch settings with Super BASIC, which has a variable rate serial I/O

written into it. The manual notes that "baud rates from less than 100

4It

to appr-ox imately 4800 baud are automat ically set by the sc.ftwal'''e. II

tried, but 2400 baud was the highest setting I could use. Super's

or
.J.

baud rate timing counter decremented past zero, and I found myself back

in the 10-100 baud range.

Then I remembered an article by Laylor Burdick that I had seen in

the old Club 1802 newsletter, in which he implemented a switchable baud lilt
rate selector in order to use a H-9 terminal at 9600 baud, and a TTY-33

at 110 baud. A little careful dismembering of"his routine, and the ad-



7
dition of a substitute for the Super BASIC startup, resulted in the fol-

lowing I/O routine which runs great on Quest's Editor/Assembler as well.

4It I was assembling my Smartvid board about the time M. Smith's re-

view appeared in I.F. #32, but later I tried to simulate the problem he

reported, about the screen going dead,- and couldn't dupl icate it. The

one thing that aggravates me about the Smartvid-80 is its problem with

the Lock Keyboard function. Sometimes my terminal will power up with

the keyboard locked, or sometimes it will detect an "escape *" sequence

in the data stream and lock up. There's no reset button, and the only

recourse is to power the terminal off, or to have the host system send

an Unlock Keyboard command (escape H). It's really annoying after you've

Just loaded 16K of program from cassette, only to find the keyboard is

locked up, and you have to power down to reset it. Possibly, I could

insert an Unlock Keyboard command in my boot-up header•••• someday•

•,

·,

·,
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

·,·......................................................, , , , , , , , , , , , , , , , , , , , , , , , , ,, , , ,,, ,, , , , , , , , , , , , , , , , ,, ,, , ,

LOAD A CLS COMMAND INTO
RF.1
AND GO OUTPUT IT

BRANCH VECTOR TO INITIALIZATION ROUTINE
BRANCH VECTOR TO BREAK ROUTINE
BRANCH VECTOR TO OUTPUT ROUTINE
BRANCH VECTOR TO INPUT ROUTINE

SUPER BASIC INITIALIZATION ROUTINE

REPLACES ENTIRE SUPER BASIC I/O INIT ROUTINE
WITH A SINGLE CLEAR SCREEN/FORM FEED COMMAND·,

It,

·,
S.INIT:LDI #0C;

PHI RF;
BR OUTPUT;

·,
;

ORG *3300

·,

.,
;.; ; ; ; ; .; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

•,
INIT: LBR S.INIT;
BREAK: LBR BREAKO;
OUTPUT:LBR OUT96;
INPUT: LBR IN96;

·,·......................................................,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

; SERIAL 9600 BAUD I/O ROUTINE
, WITH QUEST SUPER ELF OUTPUT VIA "G" LINE
; AND INPUT VIA SERIAL PORT ON EF2 FLAG LINE

; SPECIAL INITIALIZATION INCLUDED FOR QUEST
SUPER BASIC.

I :
00

0000
0000
0000
0000
0000
0000
0000
0000
0000
3300
3300
3300 C0330C
3303 C03311
3306 C0341B
3309' C03400
330C
330C

. 330C
330C
330C
330C
330C
330C.g
330C F80C
330E BF
330F 3006
3311



·,
·................................., , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
; 9600 BAUD OUTPUT ROUTINE

8

•

GET THE OUTPUT CHARACTER
SEND A SPACE AS A START BIT
START BIT TIMING
SET OF
SHIFT DF INTO BIT 8, AND BIT 0 INTO DF

MORE TIMING

CLEAR DF
WAIT FOR A START BIT
SET STH BIT TO A ONE
NOP FOR TIMING
IF 1ST BIT IS A SPACE, GO THERE
2 CYCLE NOP FOR TIMING
NOT A SPACE, SO SET HIGH ORDER BIT
AND BYPASS THE SPACE TIMING
TIMING FOR A
SPACE BIT
MORE TIMING

IF ORIG. 8TH BIT IS SHIFTED INTO DF, DONE
OTHERWISE, SHIFT RIGHT, END BIT INTO DF
AND GO BACK BOR ANOTHER BIT
TIMING FOR
THE FINAL
(8TH) BIT
SAVE THE INPUT CHARACTER AND AND GO OUTPUT

CLEAR DF
CHECK EF2 FOR BREAK CONDITION
YES, BREAK EXISTS, SET DF

·,
OUT96: GHI RF;

SEQ;
NOP;
SMI #00,
SHRC;
NOP

NXBITO:NOP;

·,·................................., , , , , , , , , , , , , , , , , , , , , , , ,,, , , , , , , , ,

9600 BAUD SERIAL INPUT/OUTPUT ROUTINES
WITH ESPECIAL THANKS TO LAYLOR BURDICK

; ; ,; ; ; ,; ; ; ; ; ; ; ; ; ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ,; ; ; ; ;

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

·,

; ; ; ; ; ; ; ; ; ; ; ; ; ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ,; ,; ; ; ; ; ; ; ; ,; ; ; ; ,; ,,

; ; ; ; ; ; ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ,; ; ; ; ; ; ; ; ; ; ; ; ;

BREAK CHECK ROUTINE

CHECKS FOR ANY INPUT DURING THE OUTPUT
ROUTINES AND RETURNS WITH DF DET IF A
BREAK CONDITION EXrSTS

BREAKO:ADI *00,
B2 BREXIT;
SMI *00,

BREXIT:RETN

ORG #3400
IN96: ADI #00;
WTST: B2 WTST;

LDI *80;
NXBIT: NOP;

BN2 SPACE;
SEX R2;
ADI #80;
BR CONT,

SPACE: NOP;
NOP;

CONTI NOP;
NOP
BDF DONE;
SHR;
BR NXBIT;

DONE: NOP;
NOP;
NOP,
PHI RF;

3311
3311
3311
3311
3311
3311
3311
3311
3311
3311
3311 FC00
3313 3517
3315 FF00
3317 D5
3318
3318
3318
3318
3318
3318
3318
3318
3318
3400
3400 FC00
3402 3502
3404 FSS0
3406 C4
3407 3D0E
3409 E2
340A FC80
340C 3010
340E C4
340F C4
3410 C4
3411 C4
3412 3317
3414 F6
3415 3006
3417 C4
3418 C4
3419 C4
341A BF
341B
341B
341B
341B
341B
341B
341B
341B 9F
341C 7B
341D C4
341E FF00
3420 76
3421 C4
3422 C4



9

NOPS FOR 4 MACHINE
CYCLES OF TIMING
IF DF ISN'T SET, SEND A SPACE
IF IT IS SET, SEND A MARK
AND DON'T
SEND A SPACE
TIMING
DONE IF ORIG. DF BIT HAS SHIFTED OUT
ELSE, SHIFT REMAINING BITS RIGHT
AND GO BACK FOR ANOTHER BIT
NOW RESTORE THE ACCUMULATOR
AND RETURN TO CALLING ROUTINE

NOP
SEX R2;
SEX R2;
BNF SP-OUT;
REG;
LSKP;

SP-OUT:SEG;
NOP;
BZ DUNOUT;
SHR;
BR NXBITO;

DUNOUT:GHI RF;
RETN;

3423 C4
3424 E2
342S E2
~6 3B2A
~8 7A
3429 C8
342A·7B
342B C4
342C 3231
342E r=6
342F 3022
3431 9F
3432 DS
3433
OBJECT ENDS AT:604A
:A4U

3300 C0330CC03311C0341BC03400F80CBF30
3310 06FC003S17FF00D5
3400 FC003502F880C43D0EE2FC803010C4C4
3410 C4C43317F63006C4C4C4BF9F7BC4FF00
3420 76C4C4C4E2E23B2A7AC87BC43231F630
3430 229FD5
OBJECT ENOS AT:604A

ENHANCEMENTS TO HANNAN'S TEXT EDITOR

One of the first things a computer hacker wants to do when he gets a

new addition to his computer system is to use it. I was no exception, so

following the addition of my new Okidata printer to my Super Elf, I began

to look for ways to utilize the new addition. Before long, I had listings

of all my programs, and had experimented with the limited graphics of the

printer. However, you can run Just so many copies of a listing, and the

time required to do anything useful with printer graphics can soon make

that activity tedious, so I was intrigued when Fred Hannan's Text Editor

appeared in Vol. 3, #2 of Questdata.

It wasn't long before I had the program on line, and found it to be

quite useful to me. However, the program has several drawbacks which

keep it from being a real II word processor ll
• It was designed as a IIlb"le

Editor ll
, not a text editor, so you have to retype the entire line to cor-

rect a spelling mistake or change a word. Also, there is no way to add

or delete a line of text, which I found to seriously inhibit my use of the

prc·gram.



10

Here are some simple additions to the Text Editor which add an "Insert"

and a "Delete" line command. They can- -be typed into the program with no

other changes, and will make Mr. Hannan's simple utility much more useful.

324 IF S$="D" GOTO 1700
323 IF S$=lId" GOTO 1700
328 IF S$-III" GOTO 1800
329 IF S$-"i" GOTO 1800

1482 PRINT "DELETE LINE - = 011
1484 PRINT "INSERT LINE - = I"

1700 INPUT "DELETE WHICH LINE #"Q: IF Q=0 GOTO 210
1705 IF QHU PRINT "LINE # DOESN'T EXIST.": GOTO 1700
1720 PRINT "DELETE LINE #";Q
1730 INPUT "Y OR N"Q$: IF Q$="Y" GOTO 1730
1740 IF Q$-"y" GOTO 1730
1741 IF Q$-IIN" GOTO 1700
1742 IF Q.a"n" GOTO 1700
1745 GOSUS 1610: GOTO 1700
1750 PRINT IILINE #II;Q: PRINT A$(Q)
1755 FOR I=Q TO (A1-1):A$(I)=A$(I+1): NEXT I
1757 PRINT IILINE DELETED II
1760 A1=A1-1: GOTO 1700

1800 INPUT IIINSERT NEW LINE I AFTER WHICH LINE I"Q: IF Q=0 GOTO 210
1810 IF Q)A1 PRINT IIINVALID ENTRy lI: GOTO 1800
1820 A1=A1+1
1830 FOR I=A1 TO (Q+1) STEP -1
1840 A$(I)=A$(I-l): NEXT I
1845 PRINT IIINPUT NEW LINE"
1850 INPUT Q$:A$(Q+1)=Q$: GOTO 1800
1900 END



•
11

CASSETTE TAPE REPAIRS
-by Dick Thornton 1403 Mormac Road, Richmond, Va. 23229

Cassette tape holders sometimes break. At times, the recorder rray
decide to eat a tape, ruining a section of it. A new tape may have
a very long leader so that data is Lost when writing. You may have
a long, high quality tape, which could be better used as two reels,
each containing half of the tape.

Correcting the above problems is simple if the holder is put to
gether with screws. If not, you need to get one that is screwed
together. Surplus houses sometimes offer these, and they can often
be found in variety stores at low cost. I recently bought a pack
of six cassettes for under $2. The tape was useless, but the holders
were screwed together.

If the cassette to be modified is in a glued or heat-welded holder,
carefully split the holder with a knife, saw, or whatever is haney,
making sure you don't damage the tape. Insice, you will find two
small plastic reels on which the tape is wrapped. The ends of the
tape are held by snap-in pieces on the edge of the reels. Save the
tape and reels and discard the rest.

Cassette holders with screws usually have 5 or G screws, one at
each corner, one centered at the rear, and one centered near the
front. Sometimes one or more screws may he under the paper label.
Remove the screws, then gently separate the top and bottom of the
holder, holding it horizontally, so parts don't fallout. If it
wont separate easily, look for more screws. Study the arrangement
of parts and how the tape is threaded. Draw a picture, if necess
ary. Discard the tape and reels if only the holder is to be used.

To free the end of the tape from a reel, start with the tape wounc
completely on the other reel. Press the small piece holding the
tape out of the reel, which frees the tape. After cutting out the
excess leader or bad section of tape, lay the reel on a table wi~h

the end of the tape lying against the cutout in the reel. Push one
end of the holder piece into the cutout, capturing the tape, then
snap the other end into the reel. Trirr off the excess tape and you
are through with this end. If the other end is to be modifiee, put
the whole thing together and rewind the tape onto the other reel,
then repeat the above for the other reel.

If you want to divide a long tape into two shorter pieces (for ex
ample, make two 30-minute cassettes from a GO-minute cassette) use
your recorder to wind equal amounts of tape on each reel before
taking the holder arart. In this case, you will want to save the
reels from the cheap holder, as you will neec two for eacr. cass
ette.



12

STRUCTURED FLOWCHARTS
by Eob Briggs

Pretend you're a new programmer and you've just been
asked to write a small program during a job interview.
What's the first thing you show-your potential employer when
you're ready with your program? A flowchart, right? This is
what some instructors will tell you, anyway.

Without getting into whether or not you should use
flowcharts (~fuy should you waste time on a flowchart
you've got it all in your head! But you need it for
documentation ... etc.) I'll describe one alternative to the
traditional technique of diamonds and boxes and connecting
lines that foster arbitrary transfers of control (i.e. GOTO's
and hard to follow code.)

Nassi-Shneiderman (N-S) charts support structured
programming concepts. After you have described your program
with N-S charts, writing structured code follows easily,
especially if you are using a structured language such as
Pascal or the C programming language. (Is FORTH a structured
language?). These charts were first publicized by f.lessrs.
Nassi and Shneiderman in their article "Flowchart Techniques
for Structured Programming," SIGPLAN notices of the ACH, v.
8, n. 8, Aug 1973. An article by C. Yoder and ~. Schrag of
IBM in Proceedings, ACM SIGSOFT/SIGMETRICS Software ana
Assurance \lorkshop, Nov 1978 (reprinted in "Tutorial on
Software Design Techniques", by Freeman and Nasserman, 1980,
IEEE Catalog No. EHO 161-0, available from IEEE Service
Center, 445 Hoes lane, Piscataway, NJ, 08854) further
describes and supports the use of these charts.

•

START
I
1

/ \
/ \ FALSE

/ COND- \
\ ITION /

\ ? /
\ /

1
1 TRUE
1

The IF-THEN-ELSE
construct is repre
sente0 using conven
tional flow charts as
shown at the left.

1 "IF" 1
I PROCESS 1

1 "ELSE" 1
1 PROCESS I

1 1
1<--------------'
1
I

END



13

The IF-THEN-ELSE construct is represented as follows
using N-S charts:

1\ fl
1 \ CONDITION / I

I \ ? / I
1\/ 1
I TRUE \ / FALSE I
1-------------------1
I 1 1
I "IF" I "ELSE" 1

1 I 1
I PROCESS I PROCESS I
I I I

In both of the above charts,
the "IF" process is performed.
the "ELSE" process is performed.

if the CONDITION is
If the condition is

TF.UE,
FALSE,

each
down
very
~own

Similar N-S chart representations exist for other
constructs such as WHILE, and DO UNTIL.

Here is an example of using the N-S charts. The problem
is to read a keyboard to see if a key has been pressed, and
to report only one keypress each time the typist presses a
key. We will assume that the computer must continually query
the keyboard to check for a key, and further assume that the
computer does not have to handle the debounce problem
i.e., the key only appears to go up and down once for
keystroke by the typist. Since the typist holds the key
for several queries by the computer (the computer is
fast), ele computer has to keep track of when the key is
and when it is released.

To keep track of whether the computer has already
reported the key we will use a variable, called FLAG. If
FLAG is SET (TRUE), the key was already reported. If FLAG is
RESET (FALSE), the key has been released or it has been
pressed and the computer has not reported it yet.

Finally, if the ESCAPE key is pressed, nhe program will
print "GOODBYE" and exit.



14

Here is the N-S chart:

---------------------:
while (not ESC)

\
\ key /

\ down /
\ ? /

yes \ / no

\ FLAG /1
\ set / I reset

\ ? / I FLAG
yes\ / nol
---------1

Irept I
[key I
I & I
Iset I
IFLAG I

print IIGOODBYE II

exit

/

The II while(not ESC)II is my shorthand for II while the key
pressed is not the ESCAPE key, continue with the contents of
the while loopll. The limit of the while loop is denoted by
the extent of the vertical bar to the left of the while
statement. In this example, it extencs down to, but not
including the print statement. By definition of the IIwhile ll
s t.e t.emerrt , if "riot; ESC" is not true, (i.e. if the ESCl1.PE key
is pressed), then program execution continues starting past
the end of the while loop. This is the print statement in
this case.

The body of the while loop contains two nested IF-THEN
ELSE constructs. If a key is not down, then the variable
FLAG is reset (i.e. set to zero, or false, or not set). Then
we have.reached the lower limit of the "whLl e " loop and so go
back to the top.

If a key is down, then FLAG is checked. If set, then
the key was down the last time it was checked. Since we do
not want to report it again, we co not do anything and go
back to the top of the loop and check the "not ESC" condition
again.

On the other hand, if a key is down and the flag is not
set, then we do report the key and set the flag before going



15

back to the top of the while loop.

As this example shows, it is very easy to follow and
check the operation of the algorithm represented by the N-S
chart. Control starts at the top and drops through one of
several vertical channels aepending on decision elements.
Large programs are handled by breaking the-code into segments
small enough to fit onto one page.

I haven't drawn out the conventional
example, but I believe it would be harder
difficult to write structured code from.
try it and compare.

flowchart for this
to follow, and more

You're invited to

The articles mentioned above have more extensive
examples of Nassi-Shneiderrnan charts. If their simplicity,
readability, and codeability intere~t you, check them out!

16 BYTE WIDE HEX DUMP

A useful utility for the computer hacker is a hexadecimal memory

dump program. In the back of the Quest Super BASIC V5.0 manual is a

short hex dump by Ron Cenker. I tried using it, but found that the

eight bit format was awkward, probably because I'm used to the out-

put format that RCA used in their utility, UT4.

Here's a short Hex Dump program written in Super BASIC which will

dump memory in 16 byte chunks, a la UT4.

Gary Jones

7717 N. 46th Drive

Glendale, Arizona 85301

~ DUMP EXAMPLE - @98D0 - @98FF

9800: 8281 D1F8 01Fl FF06 4100 59F5 0047 4760
98E0: 8008 9881 0707 0000 8200 8080 3507 3C80
98F0: 0000 0000 0000 0000 0000 0000 0007 47AA



16

5 REM 16 BYTE HEX DUMP
15 REM G.L. JONES - QUEST SUPER BASIC V5.0
20 REM
25 DEFINT Z
30 DATA "0", "1 11, "211, "3", "4", "5 11, 116", 11711, 118", "9", II All , liB", "C.., IID II; IIE II, "F"
35 FOR 1=0 TO 15: READ H$(I): NEXT I
40 RESTORE
45 INPUT "ENTER START ADDRESS (@XXXX)"Sl
50 INPUT "ENTER END ADDRESS (@YYYY)"El
55 IF Sl=El GOTO 45
60 CLS
65 SOSUB 400
70 Sl=(S1/16)*16
75 FOR A=Sl TO El STEP 16
80 SOSUB 200: REM CALCULATE ADDRESS IN HEX
85 PRINT H$(Al)+H$(A2)+H$(A3)+H$(A4);": II;: REM PRINT ADDRESS
90 FOR W=0 TO 15 STEP 2
95 Wl=PEEK(A+W):W2=PEEK(A+(W+l»
100 GOSUB 300: REM CALCULATE 4 DATA DISITS IN HEX
105 PRINT H$(Dl)+H$(D2)+H$(D3)+H$(D4);1I II;
110 NEXT W: REM INCR WORD COUNT BY TWO
115 PRINT: NEXT A: REM INCR ADDRESS COUNT BY 16
120 PRINT CHR$(30): TOUT: INPUT "MORE"Q$
125 IF MID$(Q$,l,l)=lIylI SOTO 45
130 END
200 Al=(A/4096):Nl=A-(Al*4096)
205 A2=N1/256:N2=Nl-(A2*256) ~

210 A3=N2/16:A4=N2-(A3*16) ~

215 RETURN
300 Dl=W1/16:D2=Wl-(Dl*16)
305 D3=W2/16:D4=W2-(D3*16)
310 RETURN
400 INPUT "READY PRINTER"Q$
405 IF MID$(Q$,l,l)=1I11 SOTO 415
410 IF MID$ (Q$, 1, 1) =lIy lI GOTO 420
415 TOUT : RETURN
420 INPUT IIPRINT SIZE - (S)MALL OR (R)ESULAR"Q$
425 IF MID$ (Q$, 1, 1) =11" SOTO 445
430 IF MID$(Q$,l,l)="RII SOTO 445
435 IF MID$ (Q$, 1, 1) =IISI1 SOTO 450
440 SOTO 420
445 POUT: PRINT CHR$(30): RETURN
450 POUT: PRINT CHR$(29): RETURN



17

WJRD PROCESSOR II

INTRODUCTION
I~ving just finished ,my printer interface, I read (and loaded)

with great enthusiasm the TEXT EDITOR in issue 24 of "Ipso Facto."
While it answered a great need, it lacked a'·mst important feature; a
way for the user to edit a line, either increasing or decreasing the
length without displaying the modification on final print out.

Having determined this need I started devouring all articles in
past publications on word processors, including an article on the
implementation of a word processor in North Star BASIC.1

After dissecting the listing it was apparent that a direct
conversion was impossible; at least more difficult than writing one
from scr-atch using the concepts presented. The following listing is
the result of that effort.

PROGRAM SPECIFICS
Before implementing this program it is necessary to define the

user area for the machine language programs, text storage area, and
edit line buffer. As seen in the listing the program is configured
for operation on a 36kword system. If this program is to be used with
a different sized system, use the following memory map of the 36kword
system in determing the user area.

r-EMORY MAP

SUPERBASIC
iNPUT SUBROUTINE
MOVE BACK SUBROUTINE
t1DVE FORWARD SUBROUTINE
REPLACE SUBROUTINE
TEXT CHARACTER BUFFER
EDIT UNE BUFFER
WORD PROCESSOR PROGRAM
PROGRAM STACK AREA

0000-370F
371Q-3737H
3738-373FH
3740-3757H
3758-3762H
3770-65FFH
6600-66FFH
6700-7BF8H
7BF9-7EAFH

You will note that the program and stack area require __H bytes of
memory. It is suggested that to this you add an additional 512 bytes
(for safety reasons). All other memory should be defined as user
available (by using the DEFUS command).

Before loading the program, also modify the following lines:
a) line 50 - enter address of basic's input routine
b) line 100- enter address of basic's output routine
c) line 480- change arg3 to the length of text character

buffer
d) line 500- change last argument to end of text character

buffer address
e) line 560- change the 2E8F in arg3 to the length

of the text character buffer
f) line 1840-change arg2 to the start location of the

edit line buffer



g)

h)

j)

18

line 1860-change both constants to start location of
the edit line buffer

line 1870-change the 6600H to the start location of
the edit line buffer

line 1920-change arg3 to the start location of the
edit line buffer

•

4. SAVE
5. LOAD
6. BYE

Once all of the above changes are made to reflect the configuration of
your system, define the user area and start entering the program.

Perhaps a word is in order about the machine language programs
poked into memory at the start of the program. The first program
allows the user to type faster than the same routine in BASIC would
allow (this prevents those obnoxious program breaks). The next three
programs are used purely to speed up the edit speed. Prior to writing
these, a line edited at the start of a long text file would take about
5 minutes for the program to enter.

OPERATION
The word processor is fairly well prompting. The following

functions are performed:

1. Ii~PUT - input text to the text buffer
• N~~ - start text at buffer's start
• CONTINUE - allow the user to continue adding

text from the end of the file
2. PRINT - prints text to either the terminal or printer

• LINES NUMBERED? - if answered yes, the editor
will print all lines with numbers

- if answered no, the editor will
automatically justify the right
margin

3. EDIT - allow the user to mdify text 'on a line basis
by entering shorter, equal, or longer lines

- saves the text buffer on tape
- loads the text buffer fran tape
- exits the word processor

***NOTE: The ".... " are utilized to indicate line length (space
indication). It is important to start and end
the line the same as in the old listing so as
not to mess up words in the adjacent lines.

To force carriage returns or indicate the start of a
paragraph use the key.

FUTURE MODIFICATION
The largest fault of this Word Processor is the lack of speed

with which it justifies and prints text (48 words/minute). I suggest
that someone (maybe me , if I get frustrated enough) write a machine
language subroutine to replace lines 830 through 1300. This would
greatly enhance the print speed.



.e

19

A FINAL NOTE
I would be interested in hearing from anyone with comments/

modifications to this program and in addition will provide help in the
implementation of this program if required. If a response is
necessary please send a stamped, self-addressed envelope and allow for
my lack of spare time When waiting for responses. My address is:

Tom Nery
33 County St.
Foxboro, Massachusetts 02035

USA

To give you an idea of the final results of the Word Processor
II, this article was printed by it. Good luck to all who wish to copy
it.

r.DRD PROCESSOR II

10 DEFINT Z
20 DIM Z( 150)
30 REM INPUT SUBROUTINE
40 REM ***** ADDRESS OF THE INPUT ROUTINE *****
50 DATA #D4,#33,#09
60 REM ****************************************
70 DATA #FB,#08,#3A,#lA,#28,#30,#10,#9F,#FB,#OD
80 DATA #3A,#27,#F8,#OA
90 REM ***** ADDRESS OF THE OUTPUT ROUTINE*****
100 DATA #D4,#33,#06
110 REM ****************************************
120 DATA #F8,#20,#BF,#9F,#58,#18,#2A,#9A,#3A,#32
130 DATA #8A,#3A,#32,#D5,#9F,#FB,#04,#3A,#10,#D5
140 REM MOVE SUBROUTINE FOR NEW LINE < OLD LINE
150 DATA #48,#5A,#lA,#FB,#04,#3A,#38,#D5
160 REM MOVE SUBROUTINE FOR NEW LINE > OLD LINE
170 DATA #F8,#00,#AF,#BF,#lF,#48,#lA,#lF,#FB,#04,#3A
180 DATA #45,#08,#5A,#28,#2A,#2F,#9F,#3A,#4C,#8F
190 DATA #3A,#4C,#D5
200 REM SUBROUTINE TO REPLACE OLD LINE WITH NEW
210 DATA #OA,#FB,#04,#32,#62,#4A,#58,#18,#30,#58,#D5
220 FOR 1=0 TO 82
230 READ A
240 POKE(@3710+I,A)
250 NEXT I
260 REM ENTER START OF TEXT r-EMORY
270 E30=@3770
280 w=80
290 CLS
300 INPUT "INPUT, EDIT, PRINT, LOAD, SAVE, OR BYE"A$
310 IF MID$(A$,l,l)="I" GOTO 380
320 IF MID$(A$,l,l)="P" GOTO 580
330 IF MID$(A$, 1, 1)="E" GOTO 1540
340 IF MID$ (A$, 1,1)="L" GOSUB 2000: GOTO 290
350 IF MID$(A$,l, 1)="S" GOSUB J960: WAIT (100): G9TO 290
360 IF MID$ (A$, 1,1)=liB" END
370 PRINT "PLEASE ANSWER I,E,P,L,S, OR B": GOTO 300



20

380 INPUT "IS THIS NEW OR OONTINUED INPUT"A$
390 IF MID$(A$, 1, 1)="N" GOTO 420
400 IF MID$(A$,1,1)="C" GOTO 500
410 PRINT "PLEASE ANSWER N OR C": GOTO 380
420 CLS: PRINT "READY TO ACCEPT TEXT INPUT"
430 REM *** THE FOLLOWING CALL IS TO THE MACHINE
440 REM *** LANGUAGE SUBROUTINE. THE ARGUMENTS ARE:
450 REM *** ARG 1 - SUBROUTINE ADDRESS
460 REM *** ARG 2 - TEXT STACK STARTING LOCATION
470 RB~ *** ARG 3 - MAXIMUM TEXT LENGTH
480 CALL (@3710,E30,@2E8F)
490 GOTO 290
500 FOR I=E30 TO @65FF
510 A=PEEK(I)
520 IF A=4 EXIT 550
530 NEXT I
540 PRINT "END ex TEXT NOT FOUND": OOTO 300
550 CLS: PRINT "READY TO ACCEPT TEXT INPUT CONTINUATION"
560 CALL (@3710,I,@2E8F-I-E30-2)
570 GOTO 290
580 REM *** THIS IS THE PRINT ROUTINE
590 CLS:C10=E30
600 INPUT "DO YOU WANT UNES NUMBERED"A$
610 IF MID$(A$,1,1)="Y" GOTO 760
620 IF MID$(A$,1,1)="N" GOTO 640
630 PRINT "PLEASE ANSWER Y OR N": GOTO 600
640 GOSUB 2040
650 PRINT: INPUT "HOW MANY UNES PER PAGE"P:P=P+1 e
660 PRINT : INPUT "WHAT IS STARTING LINE NUMBER"P1
670 PRINT : INPUT "PRINTER OR TERMINAL OUTPUT IEVICE"O$
6800$=MID$(0$,1,1)
690 IF 0$<> "P" IF 0$<>"T" PRINT "PLEASE ANSWER P OR T": OOTO 670
700 L5=1: IF O$="T" CLS: GOTO 830
710 PRINT : INPUT "SINGLE OR roUBLE sPACED"S$
720 S$=MID$(S$,1,1)
730 IF 3$<>"S" IF 3$<>"0" PRINT "PLEASE ANSWER S OR 0": OOTO 710
740 IF S$="D"L5=2
750 GOTO 830
760 PRINT : INPUT "LruE NUMBER RANGE (LOW,HIGH)"N8,N9
770 GOSUB 2040
780 PRINT : mpUT "PRINTER OR TERMINAL OUTPUT IEVICE"O$
7900$=MID$(0$,1,1)
800 IF O$<>"P" IF O$<>"T" PRINT "PLEASE ANSWER P OR T": OOTO 780
810 L5=1 .
820 J9=0: GOTO 1310
830 IF P1 =1 IF 0$="P" POUT : PRINT : PRINT : PRINT : PRINT : PRINT :P1 =P1+10
840 J=E30
850 K=O
860 W=W+1
870 FOR I=J TO J+W
880 K=K+1
890 Z(K)=PEEK(I)
900 NEXT I
910 REM *** SEARCH FOR NUMBER CF SPACES AND PARAGRAPH
920 REM *** DELIMITER (@) .
930 S=0:S10=0
940 M=W



21

950 N=l
960 FOR 1=1 TO M
9'70 IF Z(I)<>1120 IF Z(I)<>IJ40 THENSfo=l
980 IF Z(I)=#20 IF S10=1 THENS=S+l:Sl=I+l-N
990 IF Z(I)=#40 IF 1<>11=1-1: EXIT 1180
1000 IF Z(I)=#04 EXIT 1240
1010 IF 1=1 IF Z(1)=1140 THENM=M+l :N=N+1
1020 NEXT I
1030 K=W-Sl:Sl0=0
1040 IF Z(Sl-1)=#20K=K+1
1050 FOR L=N TO S1
1060 IF Z(L)<>#20S10=1
1070 PRINT CHR$(Z(L));
1080 IF K<>O IF Z(L)=1120 IF S10=1 PRINT" "; :K=K-l
1090 NEXT L
1100 PRINT :J=J+L-1:K=0:P1=P1+L5
1110 IF L5=2 PRINT
1120 IF P1 <P core 870
1130 P1 =11: IF 0$="P" PRINT : PRINT : PRINT : PRINT : PRINT
1140 TOUT: CLS: INPUT "PRESS <CR> TO CONTINUE"A$: CLS
1150 IF O$<>"P" CLS: core 870
1160 POUT: PRINT: PRINT: PRINT: PRINT: PRINT
1170 core 870
1180 FOR L=N TO I
1190 IF Z(L)=#40 ooTO 1210
1200 PRINT CHR$(Z(L));
1210 NEXT L
1220 J=J+1
1230 GOTO 1100
1240 FOR J=N TO I
1250 IF Z(J)=#40 GOTO 1280
1260 IF Z(J)=#04 GOTO 1280
1270 PRINT CHR$(Z(J));
1280 NEXT J
1290 PRINT
1300 TOUT :W=W-1: GOTO 290
1310 IF O$="P" GOTO 1330
1320 core 1340
1330 POlIT
1340 W=w-8
1350 FOR I=N8 TO N9
1360 ooSUB 1480
1370 W10=W*(I-1)
1380 FOR J=W10 TO W10+W-1
1390 A=PEEK(J+E30): IF A=#04 EXIT 1420
1400 PRINT CHR$(A);
1410 NEXT J
1420 PRINT : IF L5=2 PRINT
1430 IF A=#04 EXIT 1450
1440 NEXT I
1450 TOUT :W=W+8
1460 INPUT "PRESS <CR> TO CDNTINUE"A$
1470 GOTO 290
1480 IF I<10J=3: GOTO 1520
1490 IF I<100J=2: GOTO 1520
1500 IF I<1000J=1: GOTO 1520
1510 J=O
1520 PRINT TAB(J);I;TAB(8);
1530 RETURN



22
1540 CLS: PRINT "THE EDITOR IS BASED ON ";W-8;" CHARACTER LINES"
1550 INPUT "00 YOU WISH TO CHANGE IT"A$
1560 IF MID$(A$,1, 1)="Y" GOTO 1590
1570 IF MID$(A$,1,1)="N" GOTO 1610
1580 PRINT "PLEASE ANSWER Y OR N": GOTO 1550
1590 PRINT "REMEMBER, EDIT LINE LENGTH = LENGTH-8"
1600 INPUT "ENTER UNE LENGTH"W: GOTO 1540
1610 W=W-8
1620 CLS: PRINT "ENTER LINE TO BE EDITED (0 TO EXIT)"
1630 INPUT "LINE NUMBER"E5
1640 IF E5=OW=W-to8: GOTO 290
1650 PRINT : PRINT
1660 W10=W*(E5-1)
1670 I=E5
1680 GOSUB 1480
1690 FOR J=W10 TO W10+W-1
1700 A=PEEK(J+E30)
1710 IF A=#04 EXIT 1740
1720 PRINT CliR$(A);
1730 NEXT J
1740 PRINT : PRINT TAB(8);
1750 FOR J=1 TO W
1760 PRINT "A,,;
1770 NEXT J
1'780 PRINT : PRINT
1790 INPUT "00 YOU WISH TO EDIT nus UNE"A$
1800 IF MID$(A$,1,1)="Y" GOTO 1820
1810 GOTO 1620
1820 PRINT "ENTER UNE (250 CHAR. MAX), CTRL-D TO END"
1830 PRINT
1840 CALL (@3710,@6600,@00FF)
1850 CLS: PRINT "PLEASE WAIT FOR THE PROMPT"
1860 FOR I=@6600 TO @6600+#FF
1870 IF PEEK(I)=#04I=I-@6600: EXIT 1890
1880 NEXT I
1890 IF I=W GOTO 1920
1900 IF I>W GOTO 1940
1910 CALL (@3738,W10+W+E30,W10+I+E30)
1920 CALL (@3758,W10+E30,@6600)
1930 GOTO 1620
1940 CALL (@3740,W10+W+E30,W10+I+E30)
1950 GOTO 1920
1960 REM SAVE TEXT SUBROUTINE
1970 INPUT "POSITION TAPE AND PRESS <CR> TO START"A$
1980 PSAVE C
1990 RETURN
2000 REM LOAD TEXT SUBROUTINE
2010 INPUT "POSITION TAPE AND PRESS <CR> TO START"A$
2020 PLOAD C
2030 RETURN •
2040 PRINT : PRINT ''WHAT UNE LENGTH (CURRENTLY SET AT ";W;
2050 INPUT" )"W
2060 RETURN



23

8/l4/83

Association of Computer
c/o M.E. Franklin
69!Z1 Laur i er Ave.
Milton. Ontario
Canada L9T 4R5

E>:perimenters .,

Okay, okay, so you want articles for the neWSletter. I have been
meaning to send this o~e for a while, so here it is.

When adding I/O ports to the 1802, extra circuitry must be added to
gate the various control signals, ie MRD, TPA, MWR to each port.
I have designed a way to gate these signals into the decoder so
that no additional gating is required. All 14 ports are encoded~

and all outputs are active low, which is what is needed in most
cases. All that is needed is one 74C154, one half of a 4013 D type
flip-flop, one inverter, and one two 'input NOR gate.

Note that the Y0 and Y8 outputs are not used.

Ri chard M. CO)':
2670 Calle Abedul
Thousand Oaks, Calif. 91360

"2.3 A Y0
22 YI

B Y2.
ZJ Y3 :';UTPiJT

C Y4- PDRT5
Y5

2D Y6
D '/7

74-C.154

/8
6/ YB !Ie

19 /
YID '"'~
YI/ JIVPUT
YJ2 PtJRT5
'//3 5

/9
'.1 /:.~} -,-

G2 YI5" 7

N0

NI

N2

M RIJ------~--....

S
D Q..1----....:....cI

TPB~--e---fC
----yv 40 1'3

R

T PA ---------_e_-----.;;;.a



24

SHORT MEMORY TEST PROGRAM

THIS MEMORY TEST PROGRAM IS RELOCATABLE & REQUIRES LESS THAN ONE PAGE
OF MEMORY. IT LOCATES THE TOP OF A CONTINUOUS BLOCK THEN PATTERNS EACH
PAGE, TESTS THE PAGE FOR ERRORS THEN SHIFTS THE PATTERN RIGHT ONE BYTE.
EACH BYTE IS TESTED 256 TIMES AND STOPS ON ERRORS. ANY KEY PRESS CONTINUES.
HERE IS A LIST OF MONITOR CALLS USED:

D4 EO 07 XX OUTPUT INLINE BYTE
D4 EO OE OUTPUT 16 BITS OF RA AS HEX EXPRESSION
D4 EO 14 INPUT, WAIT FOR IT
D4 EO 11 OUTPUT AN ASCII STRING, TERMINATE WITH MSB SET
CO EO 00 LBR TO MONITOR
Fa 01 BE LOAD FIRST PAGE OF TEST BLOCK

IN MY SYSTEM, 20K TAKES 7.5 MINUTES WITH 3.58MHZ CLOCK.
BEWARE SYSTEMS WITH 64K CONTINUOUS RAM.

LYNN XEENLISIDE
LONDON,ONT.

0000
0010
OOZO
0030
0040
OOSO
0060
0070
0080
0090
OOAO
OOBO
OOCO
0000
OOEO
OOFO

F8 01 BE BO F8 00 AE AD
SEF33Z 090~EO 11 OC
~O ~S ~O ~F SZ S9 AO 80
11 20 S4 ~F AO SE AA 9E
00 00 80 SO AA 90 BA O~

A9 80 SZ EZ S9 SO 10 19
F3 3A S,q F8 00 A9 SO SZ
00 4S SZ SZ ~F SZ ZO ~1

OE O~ EO 1~ 10 19 EZ SO
3A 6S SO FC 01 AD 3A ~E

SZ EZ 9E F3 3A ~3 O~ EO
ZO~Z4C~F43~BZOZO

FA 7F FB S9 3Z 00 FB 17
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

EE 9E FC 01 BE OE FB FF
S~ ~S S3 S~ 49 ~E ~7 ZO
AA 90 BA O~ EO OE O~ EO
BA 2A O~ EO OE O~ EO 11
EO OE O~ EO 07 00 F8 00
SO 3A 60 90 FF 01 SO SO
EOS9F33ZS,qD~E011

S~ AO 90 SA 80 AA 04 EO
3A SF 90 FF 01 BO SO F3
O~ EO 070B 90 FC 01 BO
11 00 S~ ~F SO ZO 4F ~6

~C4F~FS0203FA06F

C2 EO 00 30 BF 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

x.)=x..-n.I.>.(
"52.T'••TESTING
MEMORY .1.:T'.T'
• TO .z. :zT'•T'•
'" ,z. :1'.T' ••x.
) .Rb.J ••• : \ ••=.
s:Tx.).RM.s2.T'.
.ERI\'OR AT .:.zT'
.T' •••b.:•••=.s
:h.I.-:NT' ... 1.=
Rb.s:CT' ••TOP OF

BLOO{ LOOP? 0

za2.{.B'.O? ••
••••••••••••••••
••••••••••••••••.t .



25

FORTH : Right 1802 Assembly Code
By- David Horner 15 Sad lee Cove Cr Agincourt Ont M1V 118

".
I aJll a newcomer to 1802. Actually, I've had the chip sitting on
ay shelf for 8 yrs and recently undertook to build a computer
.ystem for my son. I saw FORTH as an ideal vehicle to drive this
bare bones system. However, I was bothered by it's interrupt
probleas as my design uses interrupts heavily.

As aentioned by Tony Hill in the last newsletter +LOOP and LOOP
contain problem code. However, these are readily fixed in place.
The fix for the word "I" is a real challenge as the JIlachine code
could not be contained in the space required necessitating
patching code in sOJlle "available space". This would generate
non-standard variations of the club FORTH which I did not
consider acceptable. Therefore, I sought a solution that would
fit in the original space. What, as we all know, uses less
aemory than assembler code? FORTH of course!

The word "I" gets the current value from the return stack and can
be defined as follows

: I >R DUP >R ; (10 bytes)
or JIlore simply

: I R ; (6 bytes)

Which indicates "I" is the same as R! The code for R is
identical to the code proposed for "I". "I" can therefore be
impl imented by changing "I'''s pointer to point to R. Changing
the pointer allows for a standard solution and is faster and
smaller than any patch. LOOP, +LOOP and "I" can be fixed as
fol lows

LOOP +LOOP !

00££ 92 B8 B7 0126 92 B8 B7 1428 08 BF
82 A8 A7 82 A8 A7
18 17 18 17

Locations 1425 - 1430 are available for patching.

REVISED JULY 7, 1983



26
-BY ROBERT CARR, 4691 FREEMAN ROAD, MIDDLEPORT, NY ,14105 USA

HOORAY! A CLUB STANDARD MONITOR AT LAST. I OBTAINED A
LISTING OF "SYMON CSC" AT THE APRIL CLUB MEETING FIND SPENT
SEVERAL HOURS LOADING IT IN MY ELF II WITH NETRONICS VID.
THE FOLLOWING PATCHES WERE MADE TO "SYMON" TO ENHANCE ITS
~PERATICN WITH MY SYSTEM.

FIRST, I DO NOT HAVE A REAL TIME CLOCK, SO THE BYTES AT
C03DH WERE CHANGED FROM D4 C7 8C TO C4 C4 C4. THIS KEEPS
JUNK FROM PRINTING ON THE SCREEN EVERYTIME THE MONITOR IS
ENTERED.

SECOND, SINCE I OFTEN HAD A SCREEN FULL OF GARBAGE WHEN
ENTERING THE MONITOR, I WANTED TO DO A FF UPON "SYMON"
INITIALIZATION. CHANGE C036H-C03CH FROM C4 C4 C4 D4 C1 C1
18 TO D4 C1C1 18 D4 C1 78. THIS IS DONE AT THE COST OF 3
FREE BYTES IN THE INITIALIZATION CODE, BUT STILL LEAVES 3
BYTES FREE TO JUMP TO ANY INITIALIZATION CODE REQUIRED BY
YOUR SYSTEM. THIS IS EASILY DONE USING THE SCRT BUILT INTO
"SYMON" •

THIRD, SINCE MY VID DOES NOT HAVE A HANDSHAkE LINE, IT
IS NECESSARY TO DO A DELAY WHILE PERFORMING A FF. IF THIS
DELAY IS NOT USED 2 OR 3 CHARACTERS WILL BE LOST AT THE
START OF THE DISPLAY. FIRST, LOAD THE FOLLOWING CODE IN
FREE SPACE WITHIN THE MONITOR.

C414 D4 C1 86 OUTPUT FF
CR17 OC 00
C419 D4 C1 DD SAVE REG 8-B
C41C F8 40 iB AB DELAY COUNT
C420 2B 9B
C422 3A 20 LOOP UNTIL DONE
C424 D4 C1 EE RESTORE REG 8-B
C42~ D5

THEN CHANGE C178H-C17CH FROM D4 C1 86 OC 00 TO D4 C4 14 C4 C4.
FOURTH, WHEN I ENTERED AN ILLEGAL COMMAND, "SYMON"

CRASHED. CHANGE C011H FROM 3A TO 42.
FIFTH, THE BAUD RATE IS SET AT 1200. THE "SYMON 3"

LISTING IN IF=30 INCLUDED THE FOLLOWING TABLE.
BAUD 1/2 DUPLEX FULL
150 49 48
300 25 24
600 13 12
1200 09 08

LOAD THE PROPER VALUE FOR YOUR SYSTEM IN C702H. I FOUND A
VALUE OF 26H WAS NEEDED FOR MY 300 BAUD NETRONICS VID TO
PROPERLY ECHO KEYBOARD INPUT CHARACTERS, BUT 25H WORKED FINE
FOR HALF DUPLEX.

I AM CURRENTLY RUNNING "SYMON" OUT OF RAM UNTIL I AM
SATISFIED WITH THE WAY IT RUNS IN MY SYSTEM. I HAVE IN
CLUDED ALL ADDRESSES OF CHANGED LOCATIONS AND THEIR
PREVIOUS CONTENTS BECAUSE I AM NOT SU~E MY LISTING IS THE
SAME AS THE DISTRIBUTED LISTING.

AS FOR "SYI'ION", I LOVE THE DISASSEI'IBLER" BUT I'IISS THE
REGISTER SAVE AND RESTORE OF "SYSI'ION". ALSO, THE I/O NEEDS
WORK, BUT I WILL TAKE CARE OF THIS WHEN I COI'IPLETE THE CLUB
CPU BOARD WITH THE HARDWARE UART. THANK~S AGAIN MIKE.

•



27

•
00 REM...PEPSI BOTTLE TOP CONTEST."_,

CLS
30 PRINT TAB(20);"PEPSI BOTTLE TOP GAME": PRINT: PRINT
40 INPUT "DATA FROM KE~'BOARD OR TAPE" IS
SO IF MIDSCIS,1,2)="KE" GOTO 770
60 IF MIDS(IS,1,2)<>"TA" PRINT "CAN"T UNDERSTAND": WAIT(300): G
OTO 20
70 CLS: PRINT "PLACE DATA TAPE IN RECORDER"; PRINT
80 INPUT "PUT RECORDER IN PLAY MODE AND PRESS RETURN"IS
90 DLOAD C,l,l: CLS
100 PRINT "DO YOU WANT TO:": PRINT
110 PRINT TAB(10);"ENTER NEW DATA"
120 PRINT TAB(10);"CHECK FOR WINNING NUMBERS"
130 PRINT TAB(10);"LIST NUMBERS"
140 PRINT TAB(10);"SAVE DATA ON TFtftE"
150 PRINT TAB(10);"END PROGRAM"
160 INPUT "ENTER ONE OFrHE ABOVE"IS
170 IF MIDSCIS,1,3)="ENT" GOTO 230
180 IF MIDSCIS,1,3):"CHE" GOTO 460
190 IF MIDSCIS,1,3)="LIS" GOTO 550
200 IF MIDS(IS,1,3)="SAV" GOTO 73U
210 IF MIDSCIS,1,3)="END" CLS: END
220 PRINT "CAN"T UNDERSTAND": WAIT(300): CLS: GOTO 100
230 CLS: PRINT "DO YOU WANT TO:": PRINT
240 PRINT TAB(10);"ENTER A TOP NUMBER"

•
5 0 PRINT TAB(10);"ENTER A WINNING NUMBER"
60 PRINT TAB(10);"RETURN TO MENU"

270 INPUT "ENTER ONE OF THE ABOVE"IS
280 IF MIDS(IS,1,2)="TO" GOTO 320
290 IF MID$CIS,1,2)="WI" GOTO 390
300 IF MIDSCIS,1,2)="ME" CLS: GOTO 100
310 PRINT "CAN"T UNDERSTAND": WAIT(300): CLS: GOTO 230
320 CLS: PRINT "ENTER PEPSI BOTTLE TOP NUMBERS"
330 PRINT "TO END INPUT ENTER 0 <ZERO)": PRINT
340 FOR A=Tl TO 250
350 INPUT "TOP # = "TCA)
360 IF TCA)=O LET Tl=A: EXIT 380
:370 NEXT A
380 GOTO 230
390 CLS: PRINT "ENTER PEPSI WINNING NUMBERS"
400 PRINT "TO END INPUT ENTER I) (ZERO>": PRINT
410 FOR B=Wl TO 30
420 INPUT "WINNING == "WeB)
430 IF W<B)=O LET Wl=B: EXIT 450
440 NEXT B
450 GOTO 230
460 CLS: PRINT "CHECK FOR WINNING COMBINATION": PRINT
470 PRINT "WAIT A MINUTE WHILE I CHECk": PRINT
480 FOR B=l TO Wl-l
490 FOR A=l TO Tl-l .
500 IF W(B)=T(A) PRINT TAB<10>;"I FOUND ONE ";W(B);"+";TCA)

• 10 NE:X:T A
..20 tiEXT B
530 INPUT "END OF CHECK - PRESS ~ETURN TO CONTINUE"I$
540 CLS: GOTO 100



~~

ss0 CLS: PRI NT "LIST NUMBERS I N MEMORY":" uPRI NT
560 PRINT "BOTTLE TOP NUMBERS:"
~70 LET C-O
5ao FOR A-l TO Tl-l
'~90 PRINT TAB(10.c);T(A);:C=C+l
600 IF C>4 LET C=O: PRINT I...

610 NEXT A
620 PRItiT
630 ltiPUT "PRESS RETURti TO COHTItiUE"IS: CLS
640 PRItiT "WINtiINS NUMBERS:": PRItiT
6~0 LET C-O
660 FOR A-l TO Wl-1
670 PRINT TAB(10~);W(R);:C.C+1

680 IF C>4 LET C-O: PRItiT " ..
690 tiEXT R
700 PRINT
710 ItiPUT "PRESS RETURH TO COtiTItiUE"IS: CLS
720 GOTO 100
730 CLS: INPUT "PLRCE RECORDER IN RECORD MODE AND
IS
740 DSRYE C, h2
7~0 PRItiT "DATA SAVED ON TAPE": WRIT(~OO): CLS
760 GOTO 100
770 LET Tl=l: LET Wl-l
780 DIM T(2~0),W(30)

790 GOTO 100
aoo END

PRESS RETURti"

mE 8 BIT OUTPUT SCAM REVEALED

As we all know, the 1802 has seven (not including meroory mapped
I/O), 8 bit output ports, right? WRONG!!! The 1802 does in fact have
seven output ports but, (its not your fault RCA has mislead us in all
their literature) each output port can have up to 16 bits. This
effectively doubles its output capability. Before gping any fUrther,
let's look at how the 1802 does an output.

Q1ce an output instruction is recieved (as we instructed it) it
sets its mrd line low, puts the high byte address of the X register
onto the aidress bus, strobes TPA, puts the low byte a:1dress of the X
re~ister onto the address bUS, and then on the next clock cycle reads
(once again, READS) that memory ardresa. At the same time that the
mrd line goes low, the N-lines go to their given state as determined
by the second nibble of the output instruction. They stay in this
state as long as the mrd line stay low.

You have probably figured out how to implement the 16 bit outputs
after the last paragraph. By using the circuit shown in figure 1, we
can use the rrrd, TPA and the decoded N-line as the strobe to a pair of
4-bit latches for the high order byte and then use the same circuit
except replace TPA with TPB for the low order byte.

To use this new output port, all that is required is to load the
two bytes to be output into a register, set it to the X register and
then perform the appropriate output instruction (the one which selects
that port).

This ~ircuit can be a great benefit in a small dedicated
controller where the logic required for memory mapped I/O is a large
part of the circuit. Let me assure you that the circuit does work as
I have implemented it in various forms for some simple control

. applications.

Tan Nery, 33 County St., Foxboro, Massachusetts,USA,02035



29 .

ACE CPU Board

Size: 6" x 9.5"

Function: to provide - a system micro computer ( 1802 -04 -05 -06)
- control logic, power on reset, fully decoded

INTERUPT, bMAIN and DMAOUT.
selectable BOOT to any PAGE ADDRESS

- 4 JEDEC EPROM/RAM sockets, with DUAL ADDRESS
decoding for 2 locations or sizes of memory.

- INPORTand OUTPORT
- UART with selectable baud rate
- RS 232 C with 2 Db 25 connectors
- extensive protptype area (1.5" x 8.5")

CPU Board is designed to be a system or standalone micro
controller board.

Power: +5 v. Gnd. +12v for RS 232C circuit.

Documemtation: assembly and test instructions, software for UART.

PROTO TYPE AREA

22

sX22 k~
-\1

IOurt ••
--\1.•
<> 8Y At.SS CAP

ACE CPU BOARD

PARTS PLACDIPIT



30tilC _

~~

•
",Vl

(')-~
~ "0

C

~

"0O~ ~ >....0
"00

~IEF 82.10

ACE CPU BOARD

OL CIRCUITSCPU and CONTR

"en:....
.~

N-·-
O-.DOO""-l

'0

7
CPU

~ ----",'g
-----;J5

A7.

AO'

D7 •.---A-1
9~22k

00 ·~--~~ZJll..lL--l

N ~ ===:===:::!J
NO --'m

IrMA
OUT



e e e
AO: Q>(J OOARD PARTS LIST

4 22K 1/4 watt 5\

Diodes

20

19

w
~

z-.I"-~::ifie~w

~"""8Vl
o
Co....

U'l

~q~;

"'....., NO\
,00

IV U'l

o....

~i/iOiCD:':;NW~ w

il; ....

n
.... "0

C

•

....
iB

....
I!: ....
to! 0
"l o i!i
ex> ;; to!
~ 9 o
f-' ....:s!
o ~

en to

~s

9 x 22K SIP or 9-22K 1/4 watt

2 Db25 Female
(wire solder type)

7 - IN 914

1

10 4556

11 4556

Resistors

17 EPRCM/RAH

18

2 22K 1/4 watt 5\

~

2 8 position dip

Por~ UARr, RS232C

IC •

16 1853

21 1854

22 SMC-a:J4 8116 (P)

23 1852

24 1852

25 1488

26 1489

Resistors

HenDry
IC •
8 4042

9 4042

Connectors

Crystal

5.0688 JOOg.

3 - 10 mf tantalum (buss filters)

2 - 20 p.L ceramic

2 - 9 x 22K SIP or 18-22K 1/4 watt

1 - 2.2 mf tantalum

6 - 0.001 mf ceramic (bypass caps.)

1 - IN914

~

1 - l.0 meg to 5.0 meg

Diode

Resistors

SWitch

1 - 8 position dip

10 - 22K 1/4 watt 5\

1 - lOOK 1/4 watt

1 - 10 MEG 1/4 watt

capacitors

CpU Control , Boot
IC •
1 4013

2 4013

3 4011

4 4093

5 4556

6 4077

7 1802/4/5/6

12 74C244

13 4073

14 4073

15 4073



32

ACE FRONT PANEL

Size: 6" x 13.5"

Function: to provide- a 2716-32-64 Eprom burner (write only)
micro control switching for RESET/RUN, DMAIN
LOAD, MEMORY PROTECT

- Port 4 HEX PAD input
- REAL TIME CLOCK (Nat. 58167AN)
- up front ACE EDGE CONNECTOR
- 4 digit ADDRESS display
- 2 digit DATA display (port 4)
- SINGLE STEP
- PROTOTYPE AREA

Power: +5v, Gnd, +25 to 28v DC for EPROM BURNER

Documentation: Assembly and test instructions, operating guide.
Software for EPROM BURNER and REAl TIME CLOCK.

jl PASS CA~ C>



33

·~T
. °A ". L;2k"" .. ~

, o 2Sv L3 Q~~S7 0 wm ON"
• , ! 'I~D' R 3 fH RS

S6 0 CLEAR
4 "1--0

~ "MP' V

S5 0
MWR0

0 J ..~
S2~tl

MAIN 'oll~

R2
.5

07

HEX PAD and CONTROL

ACE FRONT PANEL

EPROM PROGRAMMER

12
n

P4/LOAD 5Gb"* --l--+----<:l

SINGLE STEP
GATROL DATA
""ADDRESS
DISPLAY

R1~22
L4-12

Q '-.....--4r' J.:----Q

013 LOAD ~~.u.

RESET ~~.4;
PAUSE 1"""",-.lI;.

H---~ RUN

FETCH ~....'""
EXEC.
IlMA
INT.

[J
BUFFERE;O

HI .A.D ') ,•., AO-7
4 . . 6G-'l! TO H! ADO

] ~ ---J "3b@'i
~---'=----=-tl I

oS

R"R'"D--..:.:.I
f;IWR ~:"'-~4....1-1

REAL TIME CLOCK II



34

ACE BACKPLANE AND I/O BOARD.

Sixe: 7.0" x 13.5"

Function: to provide a 14 slot 44 pin motherboards configured in the ACE standards
with addresss MRD mad MWR s TPA and TPB buffered.

to provide Netronics compatible CASSETTE I/O.
to provide TTL and/or RS 232C SERI~L I/O.
to provide PARALLEL I/O.
to provide a CPU CLOCK
to provide a MEMORY MAP (IAJ SEL)
to provide a buss power filter and distribution point.

Power: -5v s -12v. s Gnd.

Documentation: assembly and option guide.

NOTE: ACE I/O Adapter Adapter Board is available for owners of previous Backplane
(with cassette relay controller) which provides the above I/O features as an add-on
upgrade to the board. The Adapter is identical to the above board I/O section,
and connects to the buss by wire jumpers. The board mounts on the top of the origiona1
backplane by stand offs and bolts. Size: 3.0" x 13.5".

•

~ ~.•. I

~~~ • j.,...~) .

~3.n"",'

~

to _,- ·'U,."f
;vYV'o -I_

-l~:1._

I-~ 1-
\-u.... ·

~
-l.
•...
~,

'.:l -J1..1.0.
,

OQ
'1."". ~~

~
...,. 4J..... -n:: •,
~• .::

4~
'»

~

'J
~

~ 'J

\, 1.1.0~ v

e~~I 1 } 5 1 f 10 II

.. Z.



e e e

1M 122K

·5

10

OUT ~
.5 1

l. 579545 Mfej.

5

It\<

,...... 4' .1 ..' ,
0121456

w
V1

Q-A MPan d CASSETTE CLOCK PARALLEL and SERIAL CIRCUIT 'FF' ·.MEMORY MAP

ACE BACKPLANE and I/O BOARD wer 2



36

ACE 64k DYNAMIC RAM MEMORY BOARD.

Size: 6.0" x 9.5"

Function: to provide up to 64K of user RAM on the ACE configured buss. On board ~
refresh independant of micro clock. RAM may be disabled in 4k blocks by sue of
switches ($ 1 and 2). May be populated in units of 16k. Flexible jumper provision
at edge connector allows reconfiguration to o~her 44 pin configurations, ie VIP'
RCA Micro board.

Power: -5v, -12v, Gnd.

Documentation: assembly instructions, trouble shooting guide, memory test program,
operation instructions.

Cost of complete board (64k) - approximately $125.00.

ACE 64k DYNAMIC BOARD 2x10"

16k Block Cap

[jlww Ww~~DDDDDDQ-l
~ fij740491 <:> eXOooBYOSS CDS

~,swlTw ~ li1 ~ ~wOOD .-1

[] ~~f ; :Q~~D 00000:~~
" . W~D[;]DDDDDD
10UCGD «» 81 e.ci;



~ ..~ rl n r1 rl r4-rl n
Df D, 1 I I I I I,i '1011 0 1Ia- 'to'fCl ~

I!
"v. ....... ...r-... I' .---JI ~,

02

~. 04~
V .J

lAM
I , I 4 I • 7 I

, Q02't 7'1[,-
'111(,

p, .. "
c..a.i:.- 1+' J~

2'tl\
MAO L-

'tOl' .
MAl

~MA2

IU 1110
'

11
V4 VI A'

t-'"
I:A4

VSA
AI l..~ 'fOJ3

MAl

41.:...::- ..""""'- J2 wn ~ -
J

V '1ool l...t In l:.,... - DIP r:'~
.. !.-,

11 • 0 IL .. 51.. '!:JW ....... V•

V2I
VI • 10 11 12 12 14 15 11

'1OJ31 II.
~

101::::.... •

r..

vn - ,I
!-

- 'f002 I:.....,
~

DIP
~-

,11I'I III
S",· t

4,
V14 , .I

V3A I

~'
I--

~ 140:.5 I 2
-

Ie 4~ Il 'llU :;= lIU(ClTY~) U en, ~
, .1 .- . ,

"l ... h. 1.1 d
I 0

.... .... 17 11 ,. 20 21 22 21
11 7iC- T'fC>

2.

'un 313 Z'ilf
'IilAl I ...

~ 4013 ~A'
!

• UIS UI2 !I-

~8
1M~0

!-

1~ r::t
!!o- AI • i:
~ MAl

It.. _. -r MA4

I. i .1""'
.... MA'

~ I--
:all • 0 -

Ul

~. I:
I.JJ '10~3 I~" nwm

101
IIXMa I "I ~I.

2S 21 27 21 ,. '0 21 22

71fe- AO
l4't

if-

~
MAl !o-
MA'

UII ~AI ~I
3

AI
loaAI

I I tEAS I i-J_ ...J. I

L
M
N,
•I,
V

......
M

e e e



38

ACE 27l6/32/64k EPROM BOARD.

Size: 6.0" x 9.5"

function: to provide 8 - 28 pin sockets optionally configurable to accommodate 4It
2 - 4 - 8 k EPROM or RAM chips. Decoding allows for location of memory at any location
in memory. Two decoders allow mixing of any 2 sizes of memory. On board MEMORY
MAP shadow .

.'
Power: -5v, Gnd.

Documentation: assembly and operation instructions.

m ill 1J
ACE 2716-32-64 EPROM BOARD =-'c'i

15 El E2~

\ 4 ~ ..~0'-...li CB~ E2 f

W m
A

,[IJ
0 7 e 7 0 7 0 7

11 L 01 wi E R 21 G pi E R 41 i

BANytHIP SELECT """""". {\ .'
.~~~ ... .

All. ~ AlI . .
RW1f"'::-' Sv • ~ ..... .... U '\J ..... '-a" .. M

02 4

DDDDD000

'

2716
2732
2016
6116

22~··' • •... "." '''.
C1 ';r""i~" ..;\- -It-- -11- -.- -+- HI- --It-- -I-.



74C154

LOWER J2K 2716s

74C 154

UPPER J2K 21165

ACE 2716-32-64

EPROM BOARD

7

,5

o I++-l-4 I , OA..-:.
0-------

gE2 ...-0
0E\ 0 °gO ....·_-- 0 0
ot 0 0
08 0 0
oA. 0 0o 0

~~,~
MRO
Al0
CE
07
06
05
04

I 03----

o

CEOQ , o~

A2
A 1

''I 'D~ 12 - "115'01 0
.. 4 Eo - 13 - .•t-:-:-Q
13 f '.~ 11.-- Jl~
,'t 2 I 1-.1S.- 1~ 0

& f"~ 1S- l 0
~SV r--A 0

1 4-II~A 9
... c' ~ ,

I Il4 " 1-10 1I t 2 l f.. 11-

.
w

'--AH-

I ·5 .-
"- I

vI> I

A12
v- A 7

v

"" A 6
......... A 5

e- 'A 4
""'.-£> A 3-AO

07

DO

T PAm§
A7

a
M

-~SEL
----~- I j *B~RO SET UP FOR-a '2K CHIPS Ce.=0R RAM) •



40

ACE DISK CONTROLLER BOARD

Size - 6.0" x 10.0"

Function - DMA oriented 8" Disk controller for the 1802.
Singe sided, single density WD 1771 Controller chip.
Designed to support two 8- Disks, jumperable Disk
Interface will accommodate any 8" Disk. Probably
could be modified to support 5.25" Disks.
ELF 11 users require DMA Adapter board for buss interface.

Documentation - assembly instructions, mini DOS, DOS exerciser
program.

Power - + 5 v., + l2v., Gnd.

OCl OC2 C::> oC4 OCS R16
C3 CI

I 01 4 I U4 ] [§3 I U20 9
~

~ U5 q I 021 4 Cl3t7 I u16 d
~ 0 8<ffi~~a9

GJ Gi] D~ X'rAL

I U22 9=P.lO
t::=l all

<::>Cl2
~Rl

c:::J
ull 9 Gillu15

onnnnooo
Dl to 08

u12 9 R3
c:=R12c::::l
c:J R1J
c:J R14

u13 S t:::lR6 c:=RlS
c::::>C14

.D1G c:::>1 ulS ~ I u19 Sc::::. <:::;>CllClo
c:::::J1l5

~J U7 9 G3 LUlLS
OC9 Oce OC7 OC6

•



CLUB COItMDNIQUB Rev. 83.07.01

DATE:, _

•

.....

NAME:---------------
PRODUCT ORDER.

CPU Board
Backplane and I/O Board, Ver. 2
Front Panel (with EPROM Burner, Clock)'
VDU Board, Ver. 2
64K Dynamic (4116) Board
Netronics - Ace Adapter Board
I/O Adapter for Backplane, Ver. 1

Software

Fig FORTH - Netronics Cassette
format (6K) OOOOH

Tiny Pilot - Netronics Cassette
format (2K) OOOOH

SYMON - Netronics Cassette
format (2K) COOOH

Back Issues

"Defacto" Year 1 - 3 (Edited)
Year 4 Reprint
Year 5 Reprint
Year 6 Reprint

Membership - Year 7

QUANTITY UNIT PRICE

$40.00
40.00
35.00
40.00
50.00
25.00
20.00

$10.00

$10.00

$10.00

$20.00
10.00
10.00
10.00

TOTAL

Current Year - Sept. '83 - Aug. '84
includes 6 issues of Ipso Facto

Canadian
American
Overseas

mICE HOTE

$20.00 Cdn, _
20.00 u.S. ----25.00 u.S. ----

•
Prices listed are in local funds. Americans and Overseas pay in U.S.
Funds, Canadians in Canadian Funds. Overseas orders: for all items add
$10.00 for air mail postage. Please use money orders or bank draft for
prompt shipment. Personal cheques require up to six weeks for bank
clearance prior to shipping orders•

SALE POLICY

We guarantee that all our products work in an A.C.E. configuration
microcomputer. We will endeavour to assist in custom applications, but
assume no liability for such use. Orders will be shipped as promptly as
payment is guaranteed.



NAME:

MAILIRG ADDRESS:

PHONE NO.:

Note: Ensure mailing address is correct, complete and printed.
Please ensure paYEnt is enclosed.

----------,----------------------------------------------------------------

ASSOCIATION OF COMPUTER-cHIP EXPERIMENTERS
c/o M.E. FRANKLIN
690 LAURIER AVENUE,
MILTON, ONTARIO
L9T 4R5

,----------------------------------------------

•

.~

•


