“‘;\....“""

COSKIAC CLUB COSMAC CLUB CGEMAC CLUB COSMAC CLUB COSMAC CLUB CUSMAC CLUB

~ QUESTDATA
“YOUR 1802'S BEST FRIEND"

HIS newsletter is your publication. We are **"

now gathering the many good ideas you

have been sending us about your COSMAC - o

ueridnln

Issue #1

and reading them for publication possibilities. Quest,.

suppliers of the Super EIf, regular Eif and COSMAC

The COSMAC systems are built to grow with your
needs and knowledge of computers. With problems

~ such as hexadecimal addition (page 10), you will

get a chance to use the hex numbering system to

" perform useful functions. The hex chart is included in

the addition experiments so you can put a hex on all

- “your frends: Happy COSMACing!

VIP want you to get the most out of your system. We _ -

have found it necessary to form this publication in
order to better serve your needs. We will also honor

the contributions of owners of other RCA 1802

systems.

QUESTDATA will be a monthly publication and
will cover the subjects you need to know in order te
keep your COSMAC well fed with data and hardware

nourishment, Your knowledge and ideas will make a = -

great contribution to other computeyists and give you

a chance to see your words in print. We don’t have

. any special requirements for submitting your thoughts.

Write us a letter and if we print it we will pay youa
fee at the rate of $15.00 per page published. Don’t
worry about spelling and how you say the stuff—we

have a proofreader to worry about it. If he lets too

many errors slip by we chop off his head. So this is
your forum. ;
Most of all we think you want programming. You

want good documentation also so that you can mod-

ify our programs to suit your needs. How do you

design & certdin program that is your hearts desire?

We will show you. Send us y_ou’r ideas and we will

work on therh and announce them to others so they
might help out.
Programs are like puzzies, the more ms:ght you get

into working them the better. For this reason we are:

going to show you all 91 machine language instruc-

tions and the knowledge of how they work. We will’

give lots of examples in machine language. So stay
tuned for the continuing series: WHAT THE MA-
CHINE IS THINKING.

/ All of the Pprograms in this issug of QUEST- \
DATA wtll rin on Super Eif, EIf, EIf Il or
COSMAC V.I.P. systems. The timing of the
clock will make a difference in the THREE
MINUTE TIMER on page 10. The location
and information for adjusting this timing are
given in the TEMER articta. Since the V.L.P.
) " does not have a display you will not be abla
to use the display immediate part of the
MACHINE LANGUAGE section. In future
issues of QUESTDATA we will discuss the
differences batween the various COSMAC

K 1802 systems.

IN THE BEGINNING. . .
Computers Past and Present

Where did the microcomputer get its start and
where is it going? The COSMAC EIf story really starts
with the birth of the big computers. Studying the big
oldies is your key to perspective and insight into
microcomputers. This tour of ours will take you
along a computer memory lane filled with brilliant
men and stunning innovations. You wiil see how your
COSMAC was born —or rather evelved —from big |1BM
parents. Yes, your EAf owes it all to the big mainframe
computers which paved its way. If, however, you do
not care to join this exciting tour of computer evolu-
tion, you may go directly to the QUESTDATA pro-
graming section and plug the given programs into
your EIf,

The secret to understanding the nature of the
computer lies in the study of the simple on-off switch
and its brother, the relay. The computer is a machine
which combines and stores many on-off codes. Your
machine operates in binary. Bi means two. Hence we
have a number system with only two numbers; an on
{logical “1"} and off (logical ''0”"). By combining
these simpte on-off patterns, and filing them away in
a large matrix storage area, we are able to contain
both the program instructions and data. We Amer-
icans call this storage area ‘memory." It is interesting
to note that the British refer to “memory” as *stor-
age.”” They feel *memory” is best reserved for the
human mind, Any way you look at it, a computer
stores things (1's and 0's) and recalls them.

It is memory, working together with CPU {1802)
logic that,yields the results to what we feed our EIf,
The speed of today’'s computer owes much to the
speed of the electrons which travel through the wire
veins of all computers. This speed is close to the
speed of light. The speed of electricity is 300,000,000
.meters per second. Thus, when you turn on a light
switch in a dark room, it seems fike the lights come
on almost instantly and, indeed, it is very fast, But
not fast enough to please some people who are exper-
imenting with lower temperature (freezing tempera-
ture) to get the speed even faster within specialized
circuits, The effect the Jower temperature has is to
reduce the friction of the electrons moving within the
circuits, thus allowing smoother operation. Just as
friction in a2 mechanical motor is a problem, so it is
with efectrical circuits, Some day, maybe, the speed
of the electron may prove to be a limiting factor in
computers but it is fast enough to suit our purposes.

You can, if you wish, build a computer around
mechanical or water pressure principles. Remember
the old mechanical Monroe calculators? They would
take as long as a minute to do a long division problem.
You may laugh at the water or hydrocomputer if you
want, but the Russians, for a time, took them very
seriously, Given a system of valfves (a valve being an
on-off switch) you can transmit information at a fast
rate. And, instead of an electrician, you could call a
plumber to fix them, But with what plumbers charge
these days.. . .

The most surprising thing that has happened in the
last 5Q years, in the opinion of many, is the fact that
computers have shrunk in both size and cost by an
amazing amount in the last five years. Five years ago,
computers were big beasts that occupied rgoms,
Today computers with the power of an IBM 360
system cost the same as a good hi-fi system. Instead
of occupying a small room, 16K {K=thousand) bytes
of memory can be held in one hand. [n the old days,
16K was considered a lot of memory (or at least
enough for most applications). Today, a megabyte
(million bytes) is not an unusual amount of memory
to find in a system.

Memory seems to get filled, no matter how much
you have, It is like living in a house—the bigger the
house, the more stuff you find to fifl it. The fact
of the matter is that to program the 256 bytes of EIf
memory will take a professional programmer at least
a week. It takes many months to program something
like Tiny BASIC (which occupies 2K). The Tiny
BASIC program makes it possible to program your
computer more easily (in an English like language)
and pays its way by freeing the program to think
about the problem instead of the machine language.

If you wish to understand microcomputers and
learn the basics of their jargon, you should visit your
nearest library to see a copy of the September 1977
issue of Scientific American. This fantastic issue is
devoted entirely to the microcomputer and the new
age of computers which is to follow.

It is unfortunate that at this time computers are
stitl a cult which is deeply embedded in a computer
jargon that even the experts can't get together on,
For example, the word “microprocessing’ has two
meanings. It refers to the microprocessor chip that we
have in our EIf and aiso to something that existed
fong before the microprocessor came into existence.
I its other sense IBM cained the word to mean “‘the
way basic codes are put into the [BM 360 computer
so that it will recognize the machine code instruction
set.”

o~

(

FROM MAINFRAME TO MICRO

The theoretical principles underlying digital com-
puters were first given by Charles Babbage in 1833,
His invention of the computer or analytical engine
had to wait another hundred years to achieve reality,
however. This Englishman’s machine is now on dis-
play in a British museum. Despite its historical impor-
tance, the machine never worked. Some say that if
Babbage had worked with a two's system instead of a
ten’s system, it would have worked during his life-
time. But, as it was, the technology was not up to the
exacting machining of parts which he required. This
made him very angry —he died frustrated and penny-
less. The story can be read in detail in the book
Babbage, The Irascible Genius,

You would be upset too if your computer didn't
work. In this respect, Babbage has a lot in common
with today’s computer hobbyist, who is often frus-
trated and most certainly pennyless after his invest-
ment in microprocessor, memory, input and output.
A friend of this writer who recently bought a hobby
computer explains, “It is not the computer that costs
you money, the microprocessor is cheap, its the {ex-
plicative deleted) input and output that will get you.”

We live in a world which
fulfills Babbage’s dream.

A —

Anyhow, Babbage knew he was on to something big
and he -once said to a friend that he would give ten
years of his life to come back and see the world of
the future with a guide to explain things {and he
meant it). We live in a world which fulfills Babbage’s
dream.

John Von Neuman, in the 1930's, developed the
stored program concept at the Institute for Advanced
Studies at Princton University and since then elec-
tronic computers have evolved into the machines we
kanow them as today. One of those who worked on
the first computers with Von Neuman was Alan
Turing. He showed with the Universal Turing Machine
that with a long strip of paper for memory and a
piece of cardboard for a scanner, and with a dial to
keep track of the instruction you are on (Program
Counter), you are in possession of a paper and pencil
computer. With just three directives, or instructions,
for the computer of paper and pencil, you can get the
computer to do anything that any other computer
can do. tn other words, all computers are created

"equal. The belief that Turing machines are adequate

to perform any numerical or symbolic algorithm is
known as Church's Thesis, after the logician Alonzo
Church,

Alonzo Church’s Thesis cannot be proved mathe-
matically because it cannot be stated rigorously, but
it has stood the test of time. No one has been able to
express an algorithm that Turing’s machine cannot
perform. The catch to the Turing machine is that it
takes time and tape (for memory). indeed, it takes
vards of tape just to do a simple mathematical
problem.

Computers over the last 50 years have come a long
way. They started out using relays for storage {mem-
ory} and registers, This system sounded like a bunch
of ladies with knitting needles. To store something in
memory you activated the appropriate relay and you
were in business. The bit (standing for binary digit)
was either on {logical 1) or off {logical 0). But this
system cost a lot and though one relay by itself might
be fast, when you get a room fuli of them all tugging
away at their magnetic coils to pull down the ones and
zeros, you have a slow system. Also, when you have
this many relays you need a very large amount of
power to drive them,

The next thing to come along to function as a com-
puter was the electron tube. Tubes could also store
ones and zeros, and were a 1ot faster than the relay.
However, when you get that many tubes together you
have quite a power probfem and you also have a lot
of tubes to replace all the time. At least one tube
every fifteen minutes bit the dust in these big old
systems.

With the advent of core memory, we really had
something. Now by magnetizing the ferrous material
in one direction you got a zero and by magnetizing it
in the other direction you got your binary one. This
was 2 very big step forward in speed. When you sense
a core to tell which way it is magnetized, it can be
sensed in nanoseconds (billionths of a second). The
core memory, however, takes up a lot of room and
takes a lot of equipment to maintain the system. Core
memory also tends to be expensive compared to the
new semiconductor systems,

Today we have RAM {Random Access Memory)
which is 100% semiconductor in nature. They are
very small, you can hold an array of 8 bits by 1,000
focations in the palm of your hand.

The Central Processing Unit (CPU) which performs
the logical functions upon the stored memory pro-
gram, has undergone the same dramatic size reduction
as semiconductor memory, At the heart of our
COSMAC systems is a register array of 16 bits by 16
bits; these are temporary storage places which we can
save the starting addresses of CALL routines and use
as scratchpads to temporarily hold data, This register
array is composed of a lot of flip-flops similar in kind
to the flip-flops which make up RAM memory. The
microprocessor Integrated Circuit (IC) forms the

Page 3

WHAT THE MACHINE IS THINKING
brains of the COSMAC system. The 1802 IC chip. MACHINE LANGUAGE

contains thousands of transistors which act upon the
RAM memory. The RAM is like a list of things to be
done: it is the microprocessor which carries out and
steps through the list of instructions to be performed.

At least one tube every

fifteen minutes bit the dust . . .

When reading the COSMAC microprocessor User
Manual, MPM-201, you will find the many logical
and register operations that are carried out by the
microprocessor 1C. Deciphering what an instruction
actually does is a lot like reading an income tax form.
The instruction list contains very exacting and precise
definitions of what the microprocessor does with the
memory it reads. It is an amazing number of opera-
tions when you consider the old relay computers
would take a large size room to confain the same
“brain” that is now contained in the 1802 IC chip.

AN/

Is this a crazed arachnid, a printed circuit or art? Send us your ideas.

In the days of big computers, programmers would
sometimes have to wait days to get their programs
back from the processing center. With a micro-
computer, you can see the result of your program as
soon as you run your computer. Thus you have instant
feedback since you can recalt exactly what you did in
most cases and are able to see the effects of your
programming almost instantly. Gone is the trying
experience of guessing what you did and why you did
it to a program, often days later in the case of big
computer installations.

The QUESTDATA approach to programming
mastery is geared toward building a vocabulary of
machine language. By sceing how each instruction
affects the output, you will see how programs are
built. In programming, there are many ways to ac-
complish the same task. You will develop your own
programming style as we progress through the 91
COSMAC instructions. Certain patterns or blocks of
instructions repeat themselves with great frequency.
The addition of one instruction, at this point, will
show how the new instruction affects the output. In
later lessons we will build what programmers call
subroutines or CALLS out of lists or blocks of instruc-
tions which oceur with great frequency.

EXPERIMENT 1

Enough talk. Grab your EIf and punch in the hex-
adecimal code 00. Now press the run button, The Elf
does nothing, right? This is because 00 tells it to idle
(the computer equivalent of twiddling its thumbs or
revving its engine out of gear). Actually the machine
is doing something, it is waiting for an Interrupt or
DMA request, but since we are not using these hard-
ware devices at the moment, we consider the
computer to be just idling.

LOC. CODE MNEM.. ACTION

00

EXPERIMENT 1: IDLE

Now what can we make of this instruction? If we
put it at the end of a program, the machine will go
through its list of machine language things to do and
then it will come to a rest or idle. If we left it to
chance, these is a possibility that the computer could
do something strange and unpredictable since, when
the FIf is turned on, a bunch of random data fills its
memory, This is like putting a period at the end of a
sentence so that two sentences will not be read as
one. So much for Experiment |.

Page 4

LOC. CODE MNEM,

0o

EXPERIMENT 2
The instruction 7B turns on the Q-LED. The Q line
is a latched output. This means that the Q-LED will
remain on until it is told through another instruction
(7A) to turn off. We can also test the Q line to find

out whether it is on or off with a one byte instruction
—but that’s ancther experiment.

TURN
ON
Q-LED

ACTION
7B SEQ

78=TURN ON G-LED
EXPERIMENT 2

When we put 7B into the computer and follow it
with 00 we get a lit LED (gives you a feeling of power
to command your computer to do something, doesn’t
it?) If your Q line was attached to a relay or solenoid,
with' a little external circuitry, you could tell your
computer to turn on your TV or do some form of
work. All things are possible with a micro. (Well,
almost all.)

EXPERIMENT 3

The next experiment is a bit disappointing, after

TURN ON Q-LED

01 o
0 IDL HALT BY CYCLING

EXPERIMENT 4

But what if we loop back around and continually
execute 7B followed by 7A? Then we might have
something. This is what the 30 instruction will do, It
is an unconditional branch. What this means is that it
doesn’t ask any questions, it just branches. If you are
starting your program at 00 and you wz it to branch
back to 00, you just put 30, 00 into your computer
and it will do this. In other words, the thing following
30 is not an instruction but a memory location, This
is slightly different than the instructions we have
come across so far. Thisis called a two byte instruction
and in this case it expects to find two hexadecimal
digits following the 30 command. Thus, in this case
the 00 does not mean idle but go to location 00. In
the basic Super FIf we have 256 bits or one page of
memory. The 30 unconditional branch instruction
branches within this page. It is a short branch since it
stays within 256 bits (FF in hex), There are long
branch instructions which will take you out of the
page you are in but only after you buy more memory
for your Super EIf. (Some people still persist in
believing that the Long Branch is a saloon. Oh, well...)

the last. Another nothing? Actually, itisnot a nothing LOC. CODE
— it just looks like nothing. You have told the 00 30
computer to turn off its Q-LED with the 7A instruc- 01 00

MNEM, ACTION
BRANCH
IO LoC.00

BRANCH
TO LOC. 00 BR

LOC. CODE MNEM,

00
01

<?/\

b

—

tion. The Q-LED is started or initialized (in program-
mer lingo) at the beginning of every run to be off, So

" you see a doubly off LED since both you and the

micro (as part of its oun housekeeping — initialization)
have turned the computer off. What happens, you are
probably asking, if you put in 7B and quickly follow
it with 7A. Well, try it. You have just seen how fast
your machine really is. If your clock is running at
1.7898 MHz. (milliens of cycles per second) your
LED flashes on for 9.088843 millionths of a second.
This is so fast that you can’t see it. Qh well, onward.

RESET
{TURN OFF}
Q-LED

ACTION
74 REQ

00 IDL

7A=TURN OFF Q-LED
EXPERIMENT 3

TURN OFF Q-LED
HALT BY CYCLING

-
Ty

UNCONDITIONAL B8RANCH
EXPERIMENT 4

EXPERIMENT 5

So let’s put in a whole bunch of 7B instructions
(like about seven) and a whole bunch of 74 instruc-
tions (like about six) and a 30 and a 00 and see what
we get, On the Super Elf you will get a tone. If you
are using the monitor, you can put in 7B’s and 7A’s
and branch back to location 21 (30 followed by 21).
So why do we get a sound? The reason we do is that
sound is vibration and a bunch of ons and offs can
make a tone. The more 7B's and 7A’s you have, the
lower the note you hear will be. Try it. The Q-LED
will give you a visua! look at the frequency of the
on-off cycles.

Page &

)

START

X

LOC. CODE| MNEM,
00 7B SEQ
01 7B SEQ
02 7B SEQ
03 7B SEQ WV
04 7B SEQ
05 7B SEQ

78's
TURN ON's

TA%S

06 78 SEQ TURN OFF’s
07 7A REQ
08 7A REQ
09 7A REQ ,
0A 7A REQ
0B 7A REQ
0cC 74 REQ # BRANCH
oD - 30 BR TO START
OE 00

el

-~

LOOP WITH UNCONDITIONAL BRANCH
EXPERIMENT 5

#USING SEVEN 7B's AND SIX
JA's WILL GIVE A HIGH
NOTE--8,000 HZ, USE 14 7B's

(IDLE }

CONDITIONAL BRANCH
EXPERIMENT &

BN4

BYAX

SEQ
IDL

LOC. CODE MNEM,
Q0 3F
JE*
0l 00
02 7B
03 00

*VIP USES THESE CODES
PUSH ANY KEY FOR INPUT

TO RUN ON VIP
EXPERIMENT 7
There is another way to ask about the condition of
the INPUT button {up, depressed); we can ask if the
INPUT button is depressed. Although this seems to
be a more direct way to verbalize the question, it is

¥
ﬁg}{ii ';QA;Hqu ﬁGgEEL a two byte longer progran:u.lThe reason for this is tt'1at /‘\:\ :
4,000 HZ. we have to branch unconditionally back to our starting s
location, if we use this approach. Try it: 37, 04, 30,
EXPERIMENT 6 00, 78, 00.

So if 30 is an unconditional branch, what is a con-
ditional branch? A conditional branch asks a question,
On the basis of the answer to the question, the com-
puter makes a decision. The decision it makes is
where to go next. The instruction 3F asks the ques-
tion: “Is INPUT off (INPUT button not depressed)?”
If thf; INPUT l?utton is .not depressed, the memory CODE MNEM.
location following 3F will be read as the next ioca- 37 Bl
tion to go to. Now if INPUT is depressed, the 3F in- 36% B3A
struction will tell the computer to skip over its next 04
location (the one containing the other branch choice).
The best way to see this is to try the following exam- P BRANCH
ple: 3F, 00, 7B, 00. - TO START 02 | 30 BR

After keying in the instructions and running the 03 00
program (not using the monitor), you will find that 04 7B SEQ
nothing happens until you press the INPUT button and 05 .00 IDL
then the Q-LED comes on. This is the second experi-
ment with a frill added to it. :

*VIP USES THESE CODES e N
PUSH ANY KEY FOR INPUT ON
TO RUN ON VIP
CONDITIONAL AND
UNCONDITIONAL BRANCH
EXPERIMENT 7 Page 6

EXPERIMENT 8

In Experiment 2 we turned the Q-LED on and said
that we could have the computer sense (or test)
whether the Q-LED was on. This probably seemed
like a pretty silly question for a computer to ask itself
but computers are pretty dumb. The experiment we
are now going to try will turn the Q-LED on the first
time you press the INPUT and off the next time you
press the INPUT button. Here we go: 3F, 00, 37,02
39, 09, 74, 30, 00, 7B, 30, 00, If you wish to use the
Super Elf monitor, since this is a longish experment,
its: (starting at location 21) 3F, 21, 37, 23,39,04,
74, 30, 21, 7B, 30, 21

Why the inclusion of testing for both INPUT de-
pressed and INPUT not depressed? This is done for
debouncing of the INPUT switch. Since the micro-
computer operates in micro-seconds, there is a chance
that the INPUT button will hounce or chatter when it
is released, By asking both questions (Is it on, off?)
we make sure INPUT bounce does not interfere with
things.

The COSMAC has a really unique and neat instruc-
tion. 1t is display immediate. Display immediate is
not the normal mode of output for the COSMAC--
register indirect is. We will be covering register indi-
rect in the next issue of QUESTDATA; so don't
worry about it now. If you have come this far you
have done enough pondering for one day. Anyhow,
display immediate is when the P-register is equal to
the X-register. Since the R-register starts out as 0 and
the X-register starts out as () (more micro startup
housekeeping—initialization). When we are at the
start of a program P=X since 0=0. So we start outin
the display immediate mode of computer thinking (if
computers can be said to think). The P-register is the
Program Counter and the X-register is an index regis-
ter. Since we don’t need to worry about registers at
the moment, we won’t. You have already used a type
of register, the Q-latch is a register. The Q line (regis-
ter) stores only one thing (on=1 or off=0}. It is an
unusual register in that it talks to the outside world
directly. So don't let registers scare you. You have had
register experience and qualify for the job of register
person. More about registers in the next QUEST-
DATA. Stay tuned.

EXPERIMENT 9

So—display immediate. What it means is that when
P=X the micro reads the next thing {location) as
output to those seven-segment LEDs. Thus, since the
output instruction for a Super Elf and EIf is 64, the
thing following the 64 gets its name in LED lights.
Try it: 64, 99, 00. Push run and what do you get? 99.
Aren’t computers obedient?

LOC. CODE MNEM,
00 39 BNQ
oL 00

TESTING C's CONDITION
EXPERIMENT 8A

N\
- START
LOC, CODE MNEM,
00 3F BN
3E* BN3*
YES 15
< Il oFF
*VIP USES THESE CODES ?
PUSH ANY KEY FOR INPUT
TO RUN ON VIP >t NO
0L 00
02 37 B4 NO
36% B3*
03 02
046 39 BNQ YES
05 09
06 7A REQ
07 30 BR YES
08 00
09 7B SEQ
0A 30 BR NO
0B 00 /
TURN TURN-
Q-LED Q-LED
ON OFF
W/ v/
BRANCH BRANCH
TO START TO START
< /

TURN Q-LED ON THEN OFF
EXPERIMENT 8B

3

LOC, CODE MNEM.

00
01
02

64 ouTst DISPLAY

99 !MN!g[;!f\TE #ELF SYSTEMS ONLY

ao IDL WILL NOT WORK ON VIP
4

(1DLE)

DISPLAY IMMEDIATE

WHEN P=X

EXPERIMENT 8 Page 7

EXPERIMENT 10

Let’s do the last experiment; the one where we
pushed the INPUT and the Q-LED came on and then
when we pushed it again it went off, again; but with a
new twist. This time when it is on we will display 7B
and when it is off 7A on the seven-segment LEDs.
Here gnes: 3F, 00, 37, 02, 39, OB, 64, 7A, 7A, 30,
00, 64, 7B, 7B, 30, 00, Using the monitor on the
Super EIf: (starting at location 21} 3F, 21, 37, 23,
39, 2C, 64, 7A, TA, 64, 7B, 7B, 30, 00. The first 7A
in our program gets displayed and the other one is the
command that does its 7A thing (turning off the Q-
LED). Pretty good, the Elf tells you what it is thinking
or doing,

Congratulations! You have just tried out some of
the whistles and bells of the EIf and given it some
programs to think about. Computers have an insatia-
ble appetite for programs, so we have presented some
more in the PROGRAMMING section, Future QUEST-
DAT As will include more programs which have been
written for the QUESTDATA CLUB. Send us your
programs and ideas and see your name and programs
in print.

Try variations and innovations on the stuff in this
monthly feature, If you come up with a good innova.
tion we would like to hear about it. For review, pick
up the instruction manual 201 and read over the
instructions you have learned. Try new things on
your own. Have fun. Bye for now,

Welcome to the COSMAC club! If you own an
Eif, Super EIf, Eif 11, COSMAC VIP, COSMAC
Development System, CDP185020 Evaluation Kit
or Homebrew 1802, you are one of us. At the
heart of our systems beats the RCA 1802,

We will bring you all the latest news each month
concerning your COSMAC. We feel that there isa
need for 1802 owners to communicate with each
other in a quality monthly publication. You will
see lots of programs and information about your
microcomputer. We will feature a continuing series

on machine language. TINY BASIC will be covered
itn detail. Each issue will be from ten to twelve

es.
lm(g‘,ost for this monthly publication will be $12 for
a years subscription. Our software and hardware
people are here to help you. This is your publica-
tion and we sincerely hope to support and grow
with your needs. So if you haven’t already ordered
. your subscription, fill out the entry form on page
11 or use a seperate piece of paper and sign up. We
COSMAC’s must stay together.

LOC. CODE MNEM.
00 3F BN4
0l 00

<
-

NO

Sy
> YES

02 37
03 02

04 39
05 OB
06 64

DISPLAY
7A;
TURN OFF
Q-LED

07 74
08 74 REQ J
BRANCH
o TO
Y
START
09 30 BR
0A 00
0B 64 oursl
oc 7B
Ob 7B SEQ
OE 30 BR [PSHAY
OF 00 TURN ON
Q-LED
/
i BRANCH
START

TURN Q-LED ON — DISPLAY 7B
TURN Q-LED OFF — DISPLAY 7A
EXPERWENT 10

@NOTE: VIP DOES NOT HAVE LED DISPLAY

/‘\

Page 8

Tom Pittman—an interview

“The 1802 is the best microprocessor—bar none,”
Tom Pittman enthusiastically states,

So who is Tom Pittman and why {s he saying such
nice things about the 18027 Tom Pittman writes
software for a living; he writes for all kinds of com-
puters and has nothing to gain from preferring one
system over another except a better (faster, more
compact) program.

Pittman wrote the original assembler for the Intel
4004. “People still come up to me, even today, and
remember me as the one who wrote the 4004 asserm-
bler,” he says with a smile. The 4004 is a four bit
processor, as compared to the COSMAC R bits. Take
4004 and double it and you get 8008, the next gen-
eration Intel gave birth to. So mix these numbers

around and you get 8080, the next step up the micro-

processor family tree. So Tom is an early pioneer
from the days of 1972 but he is also a leader in the
cause of software vendors everywhere, -

Tom Pittman could easily make his living writing
software for just the industrial or commercial user,
But Tom would like to find a way of helping the
computer hobbyist. He wanted to test the claim that
if you make software cheap enough, it will not get
ripped off. Tiny BASIC for the 6800, 6502 and 1802
is the result of this effort. Although this has effectively
stopped rip offs, the effort has not been altogether
successful in proving to be a viable market. Why is
selling software not all that successful? At present,
Pittman cites a number of factors which limit the
software market. One is that the personal computer
market has not matured enough to recognize the
importance of software, and there is not the demand
for it. More important is the fact that good software
is expensive to produce. Good software is time con-
suming to write; it is a known fact that the average
programmer output is one line of debugged and
documented code per hour, so an 8K 8080 program
wtitten in assembly language represents two man-
years of labor, if done right, By comparison, he finds
that hardware design is a piece of cake (he knows—
he has done quite a bit of that, teo), It is the ponder-
ing of such questions as “How can programming be
made to pay its authors?” and “How can microcom-
puter hardware and software be standardized?” which
are, perhaps an even greater contribution to the
hebby computer community than his software,

If you wish to read more of Pittman’s pioneering
effort to get more software for hobbyists, you should
write to People’s Computers, 1263 El Camino Real,
Box E, Menlo Park, CA 94025, The article to ask for
is “FREE SOFTWARE? or Support Your Local Soft-
ware Vendor.”

' TOM PITTMAN, TINY BASIC & COSMAC
PART 1

The Tiny BASIC which Tom wrote for the 1802 is
shorter in coding length than the Tiny BASICs for
other microprocessors now in the marketplace, That
is quite a pat on the back for the COSMAC. Let’s
explore the development of Tiny BASIC to find out
how and why it was written.

Tiny BASIC was the brainchild of Bob Albrecht
and Dennis Allison {of People’s Computers). It was
designed to be a language which did not occupy a
whole lot of memory and would be easy for children
to learn and use. To this end, Dennis Allison devel-
oped and described an Interpretive Language (IL).
The IL is a language within a language, It forms the
framework or skeleton on which Tiny BASIC is built.
One feature of writing in IL is that programs can be
more easily rewritten for different microprocessors.
The framework given by IL helps some but one must
still sit down and write the cede, this is what Tom
Pittman did.

One difference between an interpreter and a com-
piler is that everything you type into the computer
gets saved in RAM in the interpretive approach. Thus,
you can save space in writing Tiny BASIC programs
by abbreviating PRINT to PR for example,

Tom laughs when recalling his writing of the 6502
program. “A lot of people think that the 6502 is a lot
like the 6800,"” he explains. “It isn’t, believe me. The
microcomputer world was just sitting around waiting
for someone to write Tiny BASIC for the 6502 since
the 6800 version was out and everyone thought the
two micros were similar.” Finally, Tom decided to
step in and write the 6502 Tiny BASIC.” He wrote
the 6800 Tiny BASIC in exactly 2048 or what pro-
grammers refer to as 2K of memory, but writing Tiny
BASIC for the 6502 took 200 more bytes, and due to
the way the microprocessor functions it just could
not be reduced to less. “And I had all kinds of reasons
to want it to fit since it could be made into ROM that
way, but it just wouldn’,” Then RCA funded the
development of Tiny BASIC for the 1802. “Without
even trying, the 1802 fit Tiny BASIC into about 200
bytes less than 2K.”

“The ability to change the Program Counter (PC) is
one of the outstanding features of the COSMAC,”
says Pittman. “Did you know that the 1802 was de-
veloped entirely by one man —Joe Weisbecker?” Tom
adds, “One person designing something can do a lot
more than a committee; it is the only way to do
something. Believe it or not, there are more features
and the tnicroprocessor is even more elegant than Joe
Weisbecker intended.” *‘This microprocessor is so
good that even RCA is not really aware how good it
is,” Tom Pittman sighs, He continues, “The 1802 is a
complete and symmetrical microprocessor.”

[Part JI of this two part article will be in the next QUESTDATA] Page 8

WHCK, WHAT G 3A PLUS LBY?

This machine language pregram will add 3A to 4B
and display the answer on your LED display, Adding
two numbers together in hexadecimal shows the Elf's
numbering system in action. It also has a useful pro-
gramming application—modification of addressing 10
allow you to move a program up in memory, The
shortest way to write this program is to use the two
numbers to be added together as data in the program.
See HEX ADDITION WITH ADDENDS AS DATA
listing.

When you key in the given program and run the
experiment, you will see the answer to the addition
problem displayed. If you are working with the
COSMAC VIP, vou will find the answer as the
contents of location OE.

The arrows on the listing refer to the two numbers
to be added. By changing the contents of these
locations you will change the problem.

The 84 instruction is what puts the answer on your
display. This instruction tells the computer to display
the contents of the location contained in the register
pointed to by X. Since X points to OE, you see the
contents of this location. Once you become used to
this method of display (display indirect) it will seem
quite etegant, The next issue of QUESTDATA will
cover the indirect family of instructions in detail.

The add instruction itself is FC in machine code.
This instruction tells the computer to add the next
byte it encounters to its D-register. Since the next
thing it comes accross is 4B, bingo—it adds the two.

If the Q-LED is on you have a three digit result
with 1XX in the left most position (X's represent Hex
numbers of resuitant denominations).

How can you relocate memory using this procedure?
You have only to take your absolute branches and

add the hex number that you want to move your

program up in memary to it,
If the program is a short ane this method of moving
things up in memory wili work fine,

BINARY
ssee =
e®80 =
es0e =

DECIMAL HEX

HOUW T ADD HEX

Example:

a9 00 Ceoe
+ @aCcee OO

Try lots of numbers in this experiment, The more
you work with hexadecimal the more second naturs
it will seem, Hexadecimal is a number systam based
on sixteen. If we had sixteen fingers we might be
using it as our standard number system. The binary
is given in the examples and Hex chart so you can add
numbers like the microcomputer. The microcomputer
uses the given rules to operate on the on’s {1's) and
off's {0’s). Try working out the binary example and
then look up the answer on the Hex Equivalancy
Card. If you hava an original EIf you will see the
results given to you in binary. '

This eddition problem shows tha relationships
which exist between the binary, decimal and hex-
adecimal number systems, Both the addressing and
OP CODES were designed for hex in the 1802 micro-
computer so the better you know hex the more fun
you can have with your COSMAC.

HEX ADDITION WITH ADDENDS AS DATA

LOC. CODE MNEM, ACTION
00 E4 SEX REG.4 IS POINTER
0l F8 LDI LOC. OE TO STORE
02 OE ADDITION ANSWER
03 A4 PLO R4.0 POINTS LOC.QE
04 F8 LDI LOAD FIRST NO. INTO

=05 3A D REG, (EXAMPLE=3A)
06 FC ADI ADD NEXT BYIE

-»07 4B TO D REG,(E.G.=4B)
08 54 STR STORE ANS. LOC,QE
09 64 OUT4 DISPLAY ANS.
0A 3B BNF OVERFLOW CONDITION?
OB 0D GO TO END IF DF=0
QC 7B SEQ TIF DF=1 TURN ON Q
op 00 IDL “END"

. DE ANSWER STORED HERE

[rao=Ponrer |
|

| 3A+4B= |

| Loc.oeisans. |

e8 00 =
L Xs) X J
2080
| Jejel
8000
o} R 3]
jo} X Re!
cece
OO0
coee
QCeC
o0Ce
[sleXels]

k Hexidecimal Equivalency Card

W n s nnq
—
-t WO~ W= O

odaon o

—

F-9
MMOOWEROO~-~OOEWKN—=O

ANSWER TO PROBLEM IS ON PAGE 12

DISPLAY
LOCATION
OE
1

o+ 0=

with O carry

TURN
ON
o-LED

o=on
¢ = off

ADJUST 10°s
POSITION
DEFINE

NG
WORK
Telophone Timer AREA . ves
Now you can time your long distance calls and know TIME 00 D FINE COUNT

exactly when you are going into overtime. When the RESET
three minutes are up the Q-LED lights up and you
know you are going into extra innings. Why make Ma

/ Threo Minute INTIALIZE

REGISTERS

Long Distance o

oW

ADD 1 TO COUNT

Bell richer than she already is? NO

This program should work in all COSMAC systems in
its present form. This includas Elf's with extended
memory and COSMAC VIP systems. When the Q-light TOA(?gULT YES
comes on think up an interesting conclusion to your _
telephone conversation, “Just remembered that the bath . DLECE\[:(
water is running, see ya, bye."” By cutting vour talk- TURN ON
athon short you can save some money which you can < : Q-LED
invest in your computer. L TIMER]

The Quest electronic engineer who developed the
Super Elf, points out that there is a good trick for E
saving time when loading a long program such as this [INIshED? °
with your Super EIf, What you do is use the monitor
(with all its loading advantages) to load from location

21 Hex and up. Then you release the monitor from

duty and load from location 00 to 21.
The way to control the duration of the seconds is

with hex location 16. If you wish a detay longer than 3
minutes, then change hex [ocation 37 to the delay you

LISTING ON NEXT PAGE

QUESTDATA
P.O. Box 4430

wish. If you own a COSMAC VIP you will hear a tone Santa Clara, CA 95054
as well as see your O-LED t.:orne on at t!'l& end ?f three Publisher .. Roger Pitkin
minutes. The delay stor.ed in hex location 16 is based Editor . Bill Maslacher
on systems with the TV interface {clock rate 1"7 Mhz.). Programming Assistance Pam Gaziay
Etectronics magazines feature I.'I?rfiware tlme'!rs for Proofreading. Ken Brown
darkrooms, games and other activities from tlme' to The contents of this publication are copyright © and shall
time, With a COSMAC computer you have many devices not be reproduced without permission of QUESTDATA.
. . . : Permission is granted to quote short sections of articles when
in one. If you are using your microcomputer to time a used in reviews of this publication, QUESTDATA weicomes
chess game, and you want 5 minutes per move, you contributions from its readers. Manuscripts will be returned
. only when accompanied by @ seif-addressed stamped enve-
have 0“’?/ to change the contents of'locatlon 37 (hexl} lope. Articles or programs submitted will appear with the
to 05. Since your COSMAC system is very portable it authors name unless the contributor wishes otherwise, Pay-
. ment is at the rate of $15 per published page. QUESTDATA
can be taken to where the action is. Thus, V?U can take exists for the puspose of exchanging information about the
your computer to the eggs, games and sprinklers you RCA 1802 microcomputer. Subscriptions are $12 for this
are timin monthly publication.
g. Page 11

' QUESTDATA A one year subscription to QUESTDATA, the monthly publication devoted
P.O. Box 4430 entirely to the COSMAC 1802 is $12.
Santa Clara, CA 95054 {Add $6.00 for airmail postage to all forelgn countries except Canada
and Mexico.}
Payment: Your comments are always welcome and appreciated. We want to be

|
I
i
|
!
l
|
[Check or Money Order Enclosed your 1802’s best friend. :
Made payable to Quest Electronics NAME |
B |

|

|

|

|

|

k

|

I

1

1

0O Master Charge No.

I

!

|

|

i

|

I

|

{

I

I D Bank Americard No.
40 Visa Card No.

ADDRESS

Signature CITY STATE ZIP

, Pege12
ANSWER TO THE PROBLEM ON PAGE 10- -

Listing For Three Minute Timer o s wex

LOC. CODE MNEM.

0o
02
a3
a5
06
07
08
0A
0B
oD
0E
oF
10
11
12
14
-+ 15
17
18
19
1A

1C
10
1E
1F
20
2
23

COGNAC CLUB COSRIAC CLUB CGSMAC CLUB COSMAC CLUB COSMAC CLUB CGEMAC CLuB COSMAC

ADDRESS CORRECTION REQUESTED

F8 FC
AB
F8 00
BB
68
B1
F8 FF
Al
Fg 00
51
E1
64
21
FQ
FC 01
51
Fg2 9
B2
22
92
3A 18

FO
FE
FE
FE
FE
FB AD
3A OB

LDl
PLORB
Lo
PHI RE
STR R4
PHI R1
DI
PLO R1
Lo
STR R1
SEX R
ouT 4
DEC R1
LDX
ADI
STR R1

PH{ A2
DECR2
GHI R2
BNZ

LbX
SHL
SHL
SHL
SHL
XRI

BNZ

QUESTDATA
P.O. Box 4430
Santa Clara, CA 95054

ACTION

INITIALIZE LOC.FC
RB.0 IS POINTER
MORE INITIALIZING
OF H)I REGS.

CLEAR LOC. FC
R1.1=00

DEFINE WORK AREA
R1.0=WORK POINTER
INITIALIZE LOC. FF
MEM. LOC.FF=00

X=1

SHOW LOC.FFIM)
RESTORE ADDRESS R1
D REG.=LOC.FFiM)
ADD 01 TO D REG,
PUT RESULT LOC.FF
AMT. OF DELAY
R2.1=DELAY

R2-1

D REG.=R2.1

GO TO LOC.18IF

D REG.00

D REG.=LOC.FF{M)
SHIFT LEFT TO

GET RID OF HIGH
ORDER DIGIT

.. ATHUS 4 SHL} -
TEST FOR 10 4
IF10 THEN LOC.OE

LOC. CODE MNEM. ACTION

25 FO LDX D REG.=LOC.FF(M) N
26 FC10 ADI ADD 10 TO ADJUST -
28 FFOA SMI SUB. 0A TO ADJ. UNITS
24 5t STRR1 STORE IN LOC.FF{M)
2B FB 60 XRJ TEST FOR 60 SEC.
20 3231 BZ IF 60 THEN LOC. 31
2F 30 0E BR IF NOT 60 THEN LOC.0E
31 EB SEXRB POINT TORB
32 F801 LDI ADD 1 TO COUNT
34 F4 ADD D REG.+1
35 BB STRRB STORE RESULT
»36 F803 LD 3 MIN. ?
38 F3 XOR COUNT=3?
39 3A 08B BNZ IF COUNT#3
3 7B SEQ Q=ON
3C 3008 BR SET TIME=00

{{CLOCK FREQ. IN MHZ.)(20833)} —256=
. [CONVERT ANS. TO HEX)}=
HHXX WHERE HH 18 LOC.16

—

MUSIC AND GAMES FOR BASIC ELF

A new booklet entitled Programs for the COS-
MAC Eif—Music and Games is available. The
author, Paul C. Moews, has written programs for
“Morra™ {a match wits with the computer guassing
game}, Bridg-it, reaction time tester, tic-tac-tos, /"N
musi¢ programs, monitor type subroutines and .
more. The 45 page hooklet was written for the
basic 266 byte EIf but getting the programs to
work in expanded memory requires nothing
mors than initializing the high order addresses
to 00. The explanation of each program is good

and the programs are documentad. The bookist
can be ordered by sending $2.50 plus 50¢ for
shipping to QUEST Electronics.

BULK RATE
U5, Postage Paid

QUEST
Elsctronics

Sante Clars, CA

